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Introdution

This thesis aims to de�ne a logial system orresponding to the type system with intersetion and union

types in the perspetive of the Curry-Howard isomorphism. The type system with intersetion and union

types [2℄ assigns types built by impliation, intersetion, and union to terms of the untyped �-alulus;

it is a type system à la Curry. We initially onsider a natural dedution presentation for systems in logi

or type theory, i.e. a presentation with introdution and elimination rules for every logial onnetive or

type onstrutor, respetively.

The Curry-Howard isomorphism [19℄ states a orrespondene between systems of formal logi as en-

ountered in proof theory and omputational aluli as found in type theory. For instane, the impliative

fragment of intuitionisti propositional logi orresponds to the simply typed �-alulus à la Churh, in

the sense that any proof in the logi orresponds to a typable term à la Churh, whih thoroughly enodes

the impliational struture of the proof, or to a proof in the �→ Churh type system typing this very term.

More preisely, any proof in the logi gives a proof in the type system, if \deorated" with simply typed

terms and, onversely, any proof in the type system gives bak a proof in the logi, if terms are erased. In

the diretion from the logi to the type system, this is meant modulo the onversion of formulas to types

and the elimination of strutural rules; in the diretion from the type system to the logi, it is meant

modulo the onversion of types to formulas and the addition of strutural rules. In the same manner,

the impliative, onjuntive, and disjuntive fragment of intuitionisti propositional logi orresponds to

the �

∧∨
→ Churh type system through deoration and erasure proedures. In partiular, any proof in the

logi provides a proof in the type system, if deorated with typed terms with pairs and injetions and,

onversely, any proof in the type system returns a proof in the logi, if terms are erased

1

; orresponding

proofs in the logi and the type system are suh that the term typed by the latter proof reords the im-

pliative, onjuntive, and disjuntive struture of the former. Provability of a ertain formula translates

to inhabitation of the orresponding type, while normalization of a ertain proof translates to redution of

the orresponding term to normal form. In higher levels of the isomorphism, �rst-order logi orresponds

to dependent types and seond-order logi orresponds to polymorphi types.

As far as the type system with intersetion and union types is onerned, we say that we seek a logi

orresponding to it in the perspetive of the Curry-Howard isomorphism, sine it is a Curry type system

and the isomorphism atually applies to Churh type systems. However, adjusting the isomorphism's

main idea to its ase, we seek a logi orresponding to it through a deoration with untyped terms. Suh

a logi needs to have logial onnetives orresponding to the type onstrutors of intersetion and union,

whih implies an interpretation of intersetion and union in logial terms.

The literature so far has o�ered logis orresponding to the type system with intersetion types

in the Curry-Howard perspetive. The natural question whether intersetion is logially interpreted as

1

Both diretions hold modulo the onversions already mentioned for the orrespondene between the impliative logi

and the �→ type system.
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2 Introdution

onjuntion motivates the investigation whether the impliative and onjuntive fragment of intuitionisti

propositional logi orresponds to the type system with intersetion types through a deoration with

untyped terms. Suh a orrespondene is proved unfeasible in [18, 15℄; the deoration on the logi needs to

simulate the terms in the type system and therefore to ignore, i.e. not to enode, onjuntion introdution,

but suh a deoration is impossible on proofs ontaining onjuntion introdutions on onjunts whih

are not identially deorated.

⊢ t : � ⊢ t : �
(∩I)

⊢ t : � ∩ �
⊢ t : � ⊢ u : � t = u

(∧I)
⊢ t : � ∧ �

It is only a proper subset of this logi that orresponds to intersetion types through deoration, namely

the part that admits a deoration whih ignores onjuntion introdution. Sine onjuntion introdution

in this part involves identially deorated onjunts, alled \synhronous" onjunts, we an roughly say

that intersetion is logially interpreted as a kind of synhronous onjuntion. The logis o�ered in the

literature for intersetion types attempt to express this spei� part of the impliative and onjuntive

fragment of intuitionisti logi as an autonomous logial system by internalizing the metatheoretial

ondition that onjunts be identially deorated. The logis in question [18, 15℄, introdued by S.

Ronhi Della Roa and her olleagues in the early 2000s, employ intersetion (synhronous onjuntion)

as a logial onnetive together with impliation. The logi in [18℄ is alled \Intersetion Logi" and

uses the struture of full binary trees, alled \kits", to internalize the ondition mentioned above. A

re�nement of this logi is the system \Intersetion Synhronous Logi", proposed in [15℄, whih linearizes

kits into multisets of statements, alled \moleules".

We aim to o�er a logi orresponding to the type system with intersetion and union types in the

Curry-Howard perspetive, i.e. to study an extended-with-union version of the setup desribed above.

Besides the type system with intersetion and union types, suh a version involves the impliative,

onjuntive, and disjuntive fragment of intuitionisti propositional logi, whih is the natural andidate

for a logi orresponding to intersetion and union types through deoration. As expeted, though, this

orrespondene is unfeasible; the deoration on the logi needs to simulate the terms in the type system

and therefore to indue a substitution term on disjuntion elimination, but suh a deoration is impossible

on proofs ontaining disjuntion eliminations with minor premises whih are not identially deorated

2

.

⊢ t : � ∪ � x : � ⊢ u : � x : � ⊢ u : �
(∪E)

⊢ u[t=x] : �

⊢ t : � ∨ � x : � ⊢ u : � x : � ⊢ v : � u = v

(∨E)
⊢ u[t=x] : �

The extended version, therefore, inludes the proper subset of the impliative, onjuntive, and disjuntive

fragment of intuitionisti logi that indeed orresponds to intersetion and union types through deoration,

namely the part that admits a deoration whih indues a substitution on disjuntion elimination. Sine

disjuntion elimination in this part involves synhronous minor premises, the logial interpretation of

union is a kind of synhronous disjuntion. We aim to omplete the piture in the extended setup with

the logi that expresses this spei� part of the impliative, onjuntive, and disjuntive fragment of

intuitionisti logi as an autonomous logial system by internalizing the ondition that minor premises in

disjuntion elimination be identially deorated. The obvious way to ahieve this is to extend the logis

o�ered by the team of Ronhi with union (synhronous disjuntion) as an additional logial onnetive.

2

The deoration on onjuntion introdution still needs to be as already desribed in the restrited, i.e. the union-free,

version of the setup.



Introdution 3

Chapter 1 outlines the researh results established before the start of this thesis and familiarizes the

reader with the basi argument modes for the topi. Working in natural dedution style, we present

the type system with intersetion types IT and explain why the impliative and onjuntive fragment

of intuitionisti logi, denoted LJ, does not orrespond to it through a deoration with untyped terms.

Spotting the proper subset LJns of LJ that indeed orresponds to IT through deoration, we then present

the logis \Intersetion Logi" IL and \Intersetion Synhronous Logi" ISL, whih both aim to express

LJns as an autonomous system. We demonstrate the orrespondene between eah of these logis and IT

through deoration; in both ases, suh a orrespondene interrelates a deorated derivation in the logi

with a �nite number of derivations in the type system. This hapter summarizes the work in [18, 15℄.

Chapter 2 illustrates in detail the type system with intersetion and union types IUT and its rule or

style variants, as well as its basi properties. First, a natural dedution and a sequent alulus formulation

of the system are presented and proved equivalent, the former being additive and the latter multipliative.

A sequent alulus formulation is one with left and right introdution rules for every type onstrutor, and

a ut rule. Then, while the usual subjet redution is shown to fail, a more elaborate kind of redution,

alled parallel redution, is de�ned and shown to hold. Further, a ut elimination proof is given for

the sequent alulus formulation of the system, when ontration is expliitly inluded. Finally, ertain

typings in IUT or its rule variants are examined with respet to the properties the typable terms display;

among others, it is dedued that the terms typable in IUT are all and only the strongly normalizing ones.

This hapter ombines results in [2℄ and original work.

Chapter 3 exposes an early stage attempt to de�ne a logi orresponding to intersetion and union

types in the Curry-Howard perspetive. Working in natural dedution style, we �rst show that the

impliative, onjuntive, and disjuntive fragment of intuitionisti logi, denoted ML, does not orrespond

to the type system IUT through a deoration with untyped terms. We then identify the proper subset

MLns of ML that indeed orresponds to IUT through deoration and aim to represent it as an independent

logi. Toward this end, we extend the logis IL and ISL with union rules to de�ne the logis IUL

k

and IUL

m

, respetively. We show that the extended logis are equivalent and examine whether the

orrespondene between the restrited logi (IL or ISL) and IT through deoration an be extended to a

orrespondene between the extended logi (IUL

k

or IUL

m

) and IUT through deoration. We demonstrate

how the substitution terms in union eliminations hinder the extended orrespondene. Finally, we disuss

the advantages of the formalism of moleules over the formalism of kits that arise from omparing the

union elimination rules in the extended logis. This hapter is a revised version of the work in [20℄.

Chapter 4 introdues a modi�ation

3

of the logi IUL

m

with respet to the de�nition of \moleule"

and the de�nition of rules, but still with introdution and elimination rules for impliation, intersetion,

and union. First, we present the modi�ed struture and rules, drawing attention to the ruial distintion

between global and loal rules and to the additiveness of the onnetives. Then, we state and prove ertain

derivable rules and properties of the logi. We also elaborate on derivable rules and properties of the

type system IUT in natural dedution style. Finally, we de�ne a deoration of the logi with terms that

\opy" the ones in the type system and we interrelate the deorated logi with the type system, so as to

explain how the former is meant to use its struture to depit the latter on a logial level.

Chapter 5 resolves the orrespondene between the deorated logi IUL

m

and the type system IUT

in natural dedution style. We �rst de�ne the notion of tree of impliations and union eliminations with

terms for both the deorated logi and the type system. In the deorated logi, suh trees reord the

inferenes of rules that are global and have a ounterpart in the type system, whih are the inferenes

3

The use of this modi�ation, besides providing a more onvenient system, will beome lear in the next hapter, where

we exploit it to settle the orrespondene between IUL

m

and IUT through deoration.



4 Introdution

of impliations and union elimination, as well as the deoration terms on these inferenes. In the type

system, suh trees reord the inferenes of rules that have a global ounterpart in the logi, whih are

again the inferenes of impliations and union elimination, as well as the terms in these inferenes. While

every derivation in the deorated logi has suh a tree, there are derivations in the type system whih do

not have suh a tree, as the proedure for suh trees in the type system is algorithmi and does not always

terminate. We then state and prove orrespondene theorems between the deorated logi and the type

system, i.e. from the deorated IUL

m

to IUT and onversely, whih interrelate a deorated derivation

in the logi with a �nite number of derivations in the type system via restritions that involve the trees

desribed above. A derivation in the deorated logi gives �nitely many derivations in the type system,

whose trees all exist and are idential and also idential to the tree of the derivation in the deorated

logi. Conversely, �nitely many derivations in the type system whose trees all exist and are idential

give bak a derivation in the deorated logi with a tree idential to the tree of the derivations in the

type system. We also give a detailed ounterexample against the position that the restritions ould be

removed and that we ould thus have a orrespondene in the manner of the orrespondene given in the

�rst hapter between the deorated IL (or ISL) and IT. Finally, we expliate the de�nitional fators in

the deorated logi that neessitate the restritions.

Chapter 6 examines how the method of trees, employed in the previous hapter to desribe the

orrespondene between the deorated logi IUL

m

and the type system IUT, an be adjusted to the

orrespondene between the deorated logi IL

m

and the type system IT, where the logi IL

m

is the

restrition of the logi IUL

m

to impliation and intersetion. As IL

m

is a modi�ation of ISL, the

examination of the orrespondene in question with the method of trees is atually a re-examination of

the orrespondene between the deorated ISL and IT with the method of trees. Adjusting the method

leads to the de�nition of the notion of tree of impliations with terms for both the deorated logi and the

type system. The proedure to attain the trees in the type system is still algorithmi, but we prove that

it always terminates. We then state and prove orrespondene theorems between the deorated IL

m

and

IT, whih revise the orrespondene theorems between the deorated ISL and IT in that they add the

fat that eah of the trees of the derivations in the type system is idential to the tree of the derivation in

the deorated logi. We �nally ompare and ontrast the two orrespondenes, i.e. between the deorated

IUL

m

and IUT and between the deorated IL

m

and IT, to deide whether IUL

m

is indeed a logi for IUT

in the manner that IL

m

(or ISL) is a logi for IT.

Chapter 7 presents a sequent alulus formulation of the modi�ed logi IUL

m

, whih retains the

additive harater of the natural dedution formulation. First, we display the sequent alulus rules of

the logi, fousing on the distintion between global and loal rules. Then, we prove the equivalene

between the sequent alulus and natural dedution presentations of the logi. We also prove derivable

rules and properties of the sequent alulus logi, whih are roughly the same as the ones of the natural

dedution logi. Moreover, we present an additive aount of the sequent alulus formulation of the type

system IUT. We prove the equivalene between the sequent alulus and natural dedution formulations of

the type system and also the equivalene between the additive and multipliative aounts of the sequent

alulus formulation of the type system. We elaborate on derivable rules and properties of the newly

introdued type system, whih are similar to the ones of the natural dedution type system. Finally,

working with the sequent alulus logi and type system, we translate into the sequent alulus language

the intended interrelation between the logi and the type system through deoration and the atual

orrespondene between the deorated logi and the type system through the notion of trees. Chapters

4 to 7 ontain exlusively original work.



CHAPTER 1

A Logi for Intersetion Types

The type assignment system with intersetion types, denoted IT [18, 15℄ or D [13℄, was introdued in the

early eighties by M. Coppo and M. Dezani-Cianaglini [7, 8℄ to enhane the typability power of Curry's

type assignment system �→. It is very useful as a tool for investigating pure �-alulus, sine it has

nie syntatial properties. In partiular, we an prove that it assigns types to all and only the strongly

normalizing terms [13℄.

Due to the peuliar nature of the intersetion, IT annot be used as a model for a programming

language; however, intersetion types have been partiularly useful in studying the semantis of various

kinds of �-aluli. This an be done by extending the system with suitable sub-typing relations, so that

the type assignment ats as a �nitary tool to reason about the interpretation of �-terms in topologial

models of �-alulus, like Sott domains, DI-domains and oherene spaes [1, 5, 10, 11℄.

De�nition 1.1 (IT) (i) Terms of the untyped �-alulus Λ are de�ned by the grammar: t ::= x |�x:t | tt.
(ii) The set T

IT

of intersetion types is generated by the grammar T
IT

∋ � ::= � | � → � | � ∩ �,

where � belongs to a ountable set of type variables. We use �; �; , et. to denote type variables and

�; �; �, et. to denote types. In omitting parentheses, we assume assoiativity to the right for impliation,

assoiativity to the left for intersetion, and preedene of intersetion over impliation.

(iii) A basis B is a �nite set { x1 : �1; : : : ; xm : �
m

} of assignments of intersetion types to distint

variables. We de�ne dom(B) as the set { x1; : : : ; xm }. We write B; x : � for a basis B ∪ { x : � }, i.e.
for a x 6∈ dom(B).

(iv) The type system IT proves statements of the form B ⊢ t : �, where B is a basis, t ∈ Λ and � is

an intersetion type. Its rules are shown in Figure 1.1. We write � :: B ⊢ t : � to denote a partiular

derivation � proving B ⊢ t : �.

Proposition 1.2 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respet to �, then there exists

a �

′ :: B; y : � ⊢ t[y=x] : � .
(ii) (Weakening) If B ⊢ t : � and B ⊆ B

′
, where B

′
is a basis, then B

′ ⊢ t : �.
(iii) (Strengthening) If B ⊢ t : �, then FV (t) ⊆ dom(B) and B ⊇ B

′ ⊢ t : �, where dom(B′) = FV (t).

Proof. By indution on the given derivation in eah ase. Proposition (i) is used to show (ii), while (ii)

is used to show (iii). ⊣

By adding the onstant ! to T
IT

and the so-alled (ù)-rule to the rules of IT, we get the type system

IT

ù

, denoted DÙ in [13℄. The (ù)-rule is atually an axiom stating that, for any basis B and any term

t, it is B ⊢ t : !. The following proposition holds for both IT and IT

ù

.

5



6 Chapter 1. A Logi for Intersetion Types

(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

Figure 1.1: The type system IT.

Proposition 1.3 (Subjet redution) If B ⊢ t : � and t→
�

t

′
, then B ⊢ t′ : �.

Proof. A proof an be found in [13℄. ⊣

Subjet expansion does not hold in IT. For instane, it is �y:(�x:y)(yy) →
�

�y:y and ⊢ �y:y : � → �,

but 0 �y:(�x:y)(yy) : � → �. An explanation of this fat an be found in [13℄. On the other hand,

subjet expansion does hold in IT

ù

and is proved in [13℄. The most important property of IT, though, is

stated in the following theorem.

Theorem 1.4 A term t ∈ Λ is typable in IT if and only if it is strongly normalizing.

Proof. Given in [13℄ by the reduibility method. ⊣

Remark 1.5 The result of Theorem 1.4 breaks down in IT

ù

, whih may assign the type ! to any t ∈ Λ.

For a proof-theoretial justi�ation of intersetion types, we may leave ! aside and onsider the min-

imal type system with intersetion types IT. A �rst attempt to �nd a logi orresponding to intersetion

types onsisted in investigating if and how the impliative and onjuntive fragment of intuitionisti logi,

denoted LJ in [18℄, ould be assoiated with IT.

In [17, 9℄ it is argued that intersetion types do not orrespond to provable formulas of LJ. In par-

tiular, it is shown that the set of all intersetion types whih are inhabited by a losed term does not

oinide with the set of all provable formulas of LJ, if the type onstrutor of intersetion is onverted to

the logial onnetive of onjuntion. A simple ounter-example is the type � → � → � ∩ � whih is not

inhabited, while its orresponding formula � → � → � ∧ � is provable in LJ. The result holds, though,

for the set of all inhabited Curry types and the set of all provable formulas of impliational intuitionisti

logi.

In [18, 15℄ it is argued that LJ does not orrespond to IT through a standard deoration of its

derivations with untyped �-terms. A standard deoration of LJ is one that enodes all logial rules, i.e.

both impliation and onjuntion. In fat, suh a deoration delivers the Curry type system �

∧
→. At this

point, we may reall LJ and �

∧
→, and de�ne the deoration whih serves as a \bridge" between the two

in the Curry-Howard perspetive.
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(ax)

� ⊢ �

Γ ⊢ �
(W)

Γ; � ⊢ �

Γ; �; �;∆ ⊢ �
(X)

Γ; �; �;∆ ⊢ �

Γ; � ⊢ �
(→I)

Γ ⊢ � → �

Γ ⊢ � → � Γ ⊢ �
(→E)

Γ ⊢ �

Γ ⊢ � Γ ⊢ �
(∧I)

Γ ⊢ � ∧ �
Γ ⊢ � ∧ �

(∧E1)

Γ ⊢ �
Γ ⊢ � ∧ �

(∧E2)

Γ ⊢ �

Figure 1.2: The logi LJ.

(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ u : �
(∧I)

B ⊢ (t; u) : � ∧ �
B ⊢ t : � ∧ �

(∧E1)

B ⊢ �1(t) : �
B ⊢ t : � ∧ �

(∧E2)

B ⊢ �2(t) : �

Figure 1.3: The type system �

∧
→.

De�nition 1.6 (LJ) Considering formulas generated by the grammar � ::= � | � → � | � ∧ �, where

� belongs to a ountable set of atomi formulas, the logial system LJ proves statements Γ ⊢ �, where

the ontext Γ is a �nite sequene of formulas and � is a formula. Its rules are displayed in Figure 1.2.

Impliation is right assoiative, while onjuntion is left assoiative and preedes over impliation.

De�nition 1.7 (�

∧
→) Considering types built by impliation and onjuntion, also known as simple

types, the type system �

∧
→ proves statements B ⊢ t : �, where B is a basis, t belongs to the set Λ

p

of terms with pairs, i.e. t ::= x | �x:t | tt | (t; t) |�1(t); �2(t), and � is a simple type. Its rules are shown in

Figure 1.3.

De�nition 1.8 (Standard deoration of LJ) Let � :: Γ = �1; : : : ; �m ⊢ � be a derivation in LJ.

By deorating ontexts bottom-up with distint variables starting with the sequene p = x1; : : : ; xm and

then deorating formulas to the right of \⊢" top-down with terms in Λ
p

, we get a deorated derivation

�

∗ :: Γp = x1 : �1; : : : ; xm : �
m

⊢ t : � . The deoration rules are depited in Figure 1.4. When deorating
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ u : �
(∧I)

Γp ⊢ (t; u) : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ �1(t) : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ �2(t) : �

Figure 1.4: Standard deoration of LJ.

ontexts bottom-up, the new variable in a (→I)-premise is fresh with respet to the variables in the branh

onneting the (→I)-onlusion to the root.

Any derivation of LJ an be standardly deorated to provide a derivation of �

∧
→, if deorated ontexts

are seen as sets, formulas are seen as types, and strutural rules are ignored. Conversely, any derivation

of �

∧
→ an be onverted to one of LJ, if terms are erased, variable-free bases are seen as sequenes, types

are seen as formulas, and strutural rules are added, where neessary. The following example shows the

deoration and erasure diretions between LJ and �

∧
→.

�→ � ⊢ �→ �

(W)

�→ �; � ⊢ �→ �

(X)

�; �→ � ⊢ �→ �

� ⊢ �
(W)

�; �→ � ⊢ �
(→E)

�; �→ � ⊢ �
� ⊢ �

(W)

�; �→ � ⊢ �
(∧I)

�; �→ � ⊢
LJ

� ∧ �

deoration

−→
←−

erasure

x : �; y : �→ � ⊢ y : �→ � x : �; y : �→ � ⊢ x : �
(→E)

x : �; y : �→ � ⊢ yx : � x : �; y : �→ � ⊢ x : �
(∧I)

x : �; y : �→ � ⊢
�

∧
→

(yx; x) : � ∧ �

Suh a onnetion through deoration and erasure also holds between the impliative fragment of

intuitionisti logi and Curry's type assignment system �→.

It is further argued in [18, 15℄ that even if a so-alled non-standard deoration is employed, LJ does

not orrespond to IT. The idea for a non-standard deoration that enodes the impliation, but ignores

the onjuntion, derives from the intersetion rules of IT, in whih premise and onlusion terms are

idential, and from the fat that we would like a deorated derivation of LJ to provide a derivation of IT,

if onjuntion were onverted to intersetion. The rules for suh a deoration are shown in Figure 1.5.
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ t : �
(∧I)

Γp ⊢ t : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ t : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ t : �

Figure 1.5: Non-standard deoration of LJ.

It is lear that the deoration terminates only in derivations of LJ in whih all (∧I)'s are applied to

identially deorated

1

premises; otherwise, the deoration fails. Identially deorated (sub)derivations

are alled isomorphi in [18℄. Isomorphi derivations share the same impliative struture.

Consequently, only a proper subset of LJ, denoted LJns, admits a non-standard deoration and it is

this subset that orresponds to IT through deoration and erasure. As when relating the whole of LJ

to �

∧
→, a derivation of LJns an be non-standardly deorated to provide a derivation of IT, if deorated

ontexts are seen as sets, onjuntion is onverted to intersetion, and strutural rules are ignored.

Conversely, a derivation of IT an be onverted to one of LJns, if terms are erased, variable-free bases are

seen as sequenes, intersetion is onverted to onjuntion, and strutural rules are added, if neessary.

An example of derivations in LJns and IT with suh a onnetion follows.

� ⊢ �
(→I)

⊢ �→ �

� ⊢ �
(→I)

⊢ � → �

 ⊢ 
(→I)

⊢  → 

(∧I)
⊢ (� → �) ∧ ( → )

(∧I)
⊢
LJns

(�→ �) ∧ ((� → �) ∧ ( → ))

deoration

−→
←−

erasure

x : � ⊢ x : �
(→I)

⊢ �x: x : �→ �

x : � ⊢ x : �
(→I)

⊢ �x: x : � → �

x :  ⊢ x : 
(→I)

⊢ �x: x :  → 

(∩I)
⊢ �x: x : (� → �) ∩ ( → )

(∩I)
⊢
IT

�x: x : (�→ �) ∩ ((� → �) ∩ ( → ))

Derivations in LJ\LJns do not admit a non-standard deoration. Suh a derivation is the one proving

�; � → � ⊢ � ∧ �, shown on the previous page. The left and right premises of (∧I) are deorated by yx

and x, respetively, if ontexts are deorated by x; y, whih means that a non-standard deoration annot

proeed to the onlusion.

1

We mean deorated non-standardly.
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The above disussion testi�es that LJ restrited to impliation o�ers a logial foundation to the type

system �→, while the whole of LJ o�ers a logial foundation to �

∧
→. It is not the ase that LJ is the logi

behind IT through a orrespondene by deoration and erasure. If we employ the standard deoration,

we end up orresponding with another type system, namely �

∧
→, while, if we employ the non-standard

deoration, only a proper subset of LJ orresponds to IT. This means that intersetion annot be logially

interpreted as onjuntion. It is rather a speial kind of onjuntion between isomorphi or synhronous

onjunts; it is referred to as synhronous onjuntion in [15℄, while the standard intuitionisti onjuntion

is referred to as asynhronous onjuntion. The notion of \isomorphism" or \synhroniity" of onjunts

is a metatheoretial restrition on LJ, as noted in [18℄, brought to light only by means of the non-standard

deoration. The subset LJns expresses this speial kind of onjuntion and would serve as a logi for IT,

if it were somehow autonomized and desribed as a logi by itself. This is exatly what is attempted

in [18℄ and [15℄ by introduing the logial systems \Intersetion Logi" and \Intersetion Synhronous

Logi", respetively.

1.1 Intersetion Logi

Intersetion Logi IL works with full binary trees

2

, alled kits, whose leaves are formulas generated by

impliation and intersetion. It is a natural dedution system whih proves judgements in sequent style.

Judgements inlude kits of the same struture, whih are alled overlapping. Sine IL is intended to

realize the part of LJ where (∧I) is applied to isomorphi premises, namely LJns, the rule introduing

the intersetion in IL should embody this isomorphism or sameness of premises. This is ahieved by

binary trees; in partiular, the premises beome leaves originating from the same parent-node in a kit, so

that intersetion introdution in IL has a single premise. Its onlusion gives a kit where the intersetion

of the two leaves is a leaf on the parent-node. As a result, a non-standard deoration of kits, enoding

the impliation solely, is free to terminate in any derivation of IL.

⊢ t : � ⊢ t : �
(∧I) in LJns

⊢ t : � ∧ �

⊢ t : [�; � ]
(∩I) in IL

⊢ t : � ∩ �

A onise de�nition of IL and its aompanying notions follows.

De�nition 1.9 (IL) (i) A kit is a full binary tree K ::= � | [K;K] whose leaves are formulas generated

by the grammar � ::= � | � → � | � ∩ �, where � belongs to a ountable set of atomi formulas. We use

K;H;L to denote kits and �; �; �, et. to denote leaves.

(ii) Two kits H;K overlap, denoted H ≃ K, if they share the same tree struture, but possibly di�er

on their leaves.

(iii) A path of length n in a kit is a string of n letters from the set {l; r}, where l stands for \left"
and r for \right", that orresponds to the part of the kit whih starts at the root and ends at the node

reahed after n left or right steps. We use the letters p and q with subsripts, primes, et. to denote

paths. The subtree of a kit K at path p, denoted K

p

, is the subtree of K rooted at the end of p in K.

A terminal path is one that ends at a leaf; the set of terminal paths of a kit K is denoted P

T

(K). Two
paths p and q of K are di�erent, if they split at a node of K.

2

A full binary tree is a tree in whih every node other than the leaves has two hild-nodes.
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(ax)

K ⊢ K

H1; : : : ; Hm

⊢ K H ≃ H
j

(1 6 j 6 m)
(W)

H1; : : : ; Hm

; H ⊢ K

Γ; H1; H2;∆ ⊢ K
(X)

Γ; H2; H1;∆ ⊢ K

Γ = H1; : : : ; Hm

⊢ K
(P)

Γ\ps = H1\
ps

; : : : ; H

m

\ps ⊢ K\ps

Γ; H ⊢ K
(→I)

Γ ⊢ H → K

Γ ⊢ H → K Γ ⊢ H
(→E)

Γ ⊢ K

H1[p := [�1; �1]]; : : : ; Hm

[p := [�
m

; �

m

]] ⊢ K[p := [�; � ]]
(∩I)

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := � ∩ � ]

Γ ⊢ K[p := � ∩ � ]
(∩E1)

Γ ⊢ K[p := �]

Γ ⊢ K[p := � ∩ � ]
(∩E2)

Γ ⊢ K[p := � ]

Figure 1.6: The logi IL.

(iv) If H ≃ K, then H → K is a kit overlapping with H;K and suh that (H → K)p = H

p → K

p

,

for every p ∈ P

T

(H → K)[= P

T

(H) = P

T

(K)].
(v) The notation H [p := K] stands for the kit resulting from the substitution of H

p

by K in H. If ps

is a path in H, where s ∈ {l; r}, the pruning of H at path ps, denoted H\ps, is de�ned as H [p := H

ps].
(vi) The dedutive system IL derives judgements Γ ⊢ K, where the ontext Γ is a sequene of kits and

K is a kit. It onsists of the rules in Figure 1.6.

Remark 1.10 The inlusion of the strutural rule of pruning, rule (P) in Figure 1.6, is motivated by

purely tehnial reasons, i.e. reasons onerning the manipulation of the tree struture.

It is easy to show that all judgements derived in IL inlude overlapping kits, i.e. if H1; : : : ; Hm

⊢ K,

then H

j

≃ K (1 6 j 6 m).
The impliative rules a�et all terminal paths (or leaves) of (some of) the kits involved and are alled

global. On the other hand, the notation \ [p := ]" used in the intersetion rules shows that these rules

at on a spei� path p. Rules a�eting a spei� path are alled loal. Pruning also ats loally on kits.

The system just de�ned as \Intersetion Logi" is atually alled \pre-Intersetion Logi", denoted

pIL, in [18℄. Then, a derivation of IL proving Γ ⊢ K is de�ned as an equivalene lass of derivations of

pIL, all proving Γ ⊢ K. The equivalene relation between derivations of pIL is introdued to eliminate

unneessary di�erentiations resulting from di�erenes in the order of appliation of onseutive interse-

tion rules onerning di�erent paths. In pratie, though, a derivation of IL is identi�ed with a derivation

of pIL in the spei�ed equivalene lass.

To give a orrespondene between IL and LJns and also between IL and IT, a non-standard deoration

of IL is de�ned in [18℄. The deoration employs untyped �-terms to keep trak of the impliative struture

of derivations.
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(ax)

x : K ⊢ x : K

x1 : H1; : : : ; xm : H
m

⊢ t : K
(W)

x1 : H1; : : : ; xm : H
m

; x : H ⊢ t : K

Γ r; y : H1; x : H2; ∆
r

′

⊢ t : K
(X)

Γ r; x : H2; y : H1; ∆
r

′

⊢ t : K

x1 : H1; : : : ; xm : H
m

⊢ t : K
(P)

x1 : H1\
ps

; : : : ; x

m

: H
m

\ps ⊢ t : K\ps

Γ r; x : H ⊢ t : K
(→I)

Γ r ⊢ �x: t : H → K

Γ r ⊢ t : H → K Γ r ⊢ u : H
(→E)

Γ r ⊢ tu : K

x1 : H1[p := [�1; �1]]; : : : ; xm : H
m

[p := [�
m

; �

m

]] ⊢ t : K[p := [�; � ]]
(∩I)

x1 : H1[p := �1]; : : : ; xm : H
m

[p := �

m

] ⊢ t : K[p := � ∩ � ]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E1)

Γ r ⊢ t : K[p := �]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E2)

Γ r ⊢ t : K[p := � ]

Figure 1.7: Non-standard deoration of IL.

De�nition 1.11 (Non-standard deoration of IL) Let � :: Γ = H1; : : : ; Hm

⊢ K be a derivation in

IL. By deorating ontexts bottom-up with distint variables starting with the sequene r = x1; : : : ; xm

and then deorating kits to the right of \⊢" top-down with terms in Λ, we get a deorated derivation

�

? :: Γ r = x1 : H1; : : : ; xm : H
m

⊢ t : K. The deoration rules are shown in Figure 1.7. When deorating

ontexts bottom-up, the new variable in a (→I)-premise is fresh with respet to the variables in the branh

onneting the (→I)-onlusion to the root.

The following theorem onnets IL to LJns modulo the onversion of intersetion to onjuntion. It

states that a derivation in IL projets to a �nite number of derivations in LJns that all admit the same

non-standard deoration, namely the non-standard deoration of the IL-derivation.

Theorem 1.12 Let � :: H1; : : : ; Hm

⊢ K be a derivation in IL, s.t. �

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K.

For every p ∈ P

T

(K), there exists a derivation �

p :: (H1)
p

; : : : ; (H
m

)p ⊢ Kp

in LJns, suh that it admits

the same (non-standard) deoration as �, i.e. suh that (�p)? :: x1 : (H1)
p

; : : : ; x

m

: (H
m

)p ⊢ t : Kp

.

Proof. Given in [21℄ by indution on �. ⊣

1.1.1 Strong normalization of IL

Derivations in IL are shown to be strongly normalizing in [18, 21℄. A normal derivation is one whih is

free of the pruning rule and also free of impliation and intersetion redexes. The pruning rule an be

easily eliminated, sine it ommutes with every other rule and an thus be shifted up just below axioms,

where it an be ignored. Then, impliation and intersetion redexes an be redued as shown below.
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�0 :: Γ; H ⊢ K
(→I)

Γ ⊢ H → K
�1 :: Γ ⊢ H

(→E)

Γ ⊢ K

,→→ S(�1; �0) :: Γ ⊢ K

The notation S(�1; �0) stands for the derivation obtained from �0 by substituting spei�

3

instanes of

axioms H ⊢ H by �1 and then possibly eliminating some instanes of weakening and exhange.

H1[p := [�1; �1]]; : : : ; Hm

[p := [�
m

; �

m

]] ⊢ K[p := [�; � ]]
(∩I)

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := � ∩ � ]
(∩E1)

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := �]

,→∩

H1[p := [�1; �1]]; : : : ; Hm

[p := [�
m

; �

m

]] ⊢ K[p := [�; � ]]
(P) on pl

H1[p := �1]; : : : ; Hm

[p := �

m

] ⊢ K[p := �]

To show that IL is strongly normalizing, Theorem 1.12 and the strong normalization of LJ are used.

Theorem 1.13 A derivation in IL is strongly normalizing.

Proof. A detailed proof is given in [21℄. ⊣

1.1.2 Correspondene between IL and IT

The following two theorems are stated and proved in [18℄. The �rst one relates a derivation of IL to a

�nite number of derivations in IT through the non-standard deoration of IL. The seond one relates a

single derivation of IT to a derivation in IL, whose non-standard deoration are the terms in the derivation

of IT.

Theorem 1.14 Let � :: H1; : : : ; Hm

⊢ K be a derivation in IL, s.t. �

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K.

For every p ∈ P

T

(K), there exists a derivation �

p :: { x1 : (H1)
p

; : : : ; x

m

: (H
m

)p } ⊢ t : Kp

in IT.

Proof. By indution on the IL-derivation �. ⊣

Theorem 1.15 If � :: { x1 : �1; : : : ; xm : �
m

} ⊢ t : � is a derivation in IT, there exists a derivation

�

′ :: �1; : : : ; �m ⊢ � in IL, where �1; : : : ; �m, and � are kits onsisting of a single node, suh that

(�′)? :: x1 : �1; : : : ; xm : �
m

⊢ t : � .

Proof. By indution on the IT-derivation �. ⊣

3

Instanes suh that the kit H to the left of \⊢" does not move to the right of \⊢" by an (→I) rule.
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1.2 Intersetion Synhronous Logi

Intersetion Synhronous Logi ISL is a natural dedution system proving multisets, alled moleules,

whose members are atoms. Roughly speaking, atoms are intuitionisti statements, where onjuntion is

onverted to intersetion. This logi is also intended to realize LJns, where (∧I) is applied to isomorphi

premises, so the rule introduing the intersetion embodies this isomorphism, as was the ase in IL. This

is ahieved by \gathering" isomorphi premises as atoms of the same moleule, so that intersetion intro-

dution has again a single premise. Its onlusion gives a moleule where the two atoms, orresponding

to the isomorphi premises, have merged into one atom that ontains the intersetion of the premises. As

was the ase with kits, a non-standard deoration of moleules, enoding the impliation solely, is free to

terminate in any derivation of ISL.

⊢ t : � ⊢ t : �
(∧I) in LJns

⊢ t : � ∧ �

t : [( ; �); ( ; � )]
(∩I) in ISL

t : [( ; � ∩ � )]

The strutural omponents and the rules of ISL are de�ned as follows.

De�nition 1.16 (ISL) (i) Formulas are generated by the grammar � ::= � | � → � | � ∩ �, where �

belongs to a ountable set of atomi formulas.

(ii) An atom is a pair (Γ ; �), where the ontext Γ is a �nite sequene of formulas and � is a formula.

We use A;B; C to denote atoms.

(iii) A moleule [A1; : : : ;An

] is a �nite multiset of atoms that all share the same ontext ardinality.

We use M;N to denote moleules.

(iv) The dedutive system ISL proves moleules by the rules depited in Figure 1.8. We use the

notation [(Γ
i

; �
i

)
i

] for a moleule [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] and the symbol \∪" for multiset union.

It is explained in detail in [15, 21℄ why it is neessary to de�ne atom-ontexts as sequenes and have

expliit weakening and exhange in order for ISL to orretly apture the behavior of the intersetion

onnetive.

The rules of ISL an be ategorized as global or loal aording to whether they a�et all or some

atoms of the premise moleule(s), respetively. The strutural rules of weakening and exhange and the

impliation rules are global, while the strutural rule of pruning and the intersetion rules are loal.

A non-standard deoration of ISL is de�ned in [15℄. This deoration is used in [21℄ to establish a

orrespondene between ISL and LJns and is also used in [15℄ to establish a orrespondene between ISL

and IT.

De�nition 1.17 (Non-standard deoration of ISL) Let � :: M = [(Γ
i

; �
i

)
i

] = [(�i1; : : : ; �
i

m

; �
i

)
i

]
be a derivation in ISL. By deorating ontexts bottom-up with distint variables starting with the sequene

p = x1; : : : ; xm and then deorating moleules top-down with terms in Λ, we get a deorated derivation

�

? :: t : M
p

= [(Γ
i

; �
i

)
i

]
p

= [(x1 : �i1; : : : ; xm : �i
m

; �
i

)
i

]. The deoration rules are shown in Figure 1.9.

When deorating ontexts bottom-up, the new variable in an (→I)-premise is fresh with respet to the

variables in the branh onneting the (→I)-onlusion to the root.

The following theorem is analogous to Theorem 1.12 for IL. It is stated and proved in [21℄ and onnets

ISL to LJns modulo the onversion of intersetion to onjuntion.
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(ax)

[(�
i

; �
i

)
i

]

[(Γ
i

; �
i

)
i

]
(W)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

M∪N
(P)

M

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

M∪ [(Γ ; �); (Γ ; � )]
(∩I)

M∪ [(Γ ; � ∩ � )]

M∪ [(Γ ; � ∩ � )]
(∩E1)

M∪ [(Γ ; �)]

M∪ [(Γ ; � ∩ � )]
(∩E2)

M∪ [(Γ ; � )]

Figure 1.8: The logi ISL.

(ax)

x : [(�
i

; �
i

)
i

]
x

t : [(Γ
i

; �
i

)
i

]
p

(W)

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t :M
p

∪N
p

(P)

t :M
p

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t :M
p

∪ [(Γ ; �); (Γ ; � )]
p

(∩I)
t :M

p

∪ [(Γ ; � ∩ � )]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E1)

t :M
p

∪ [(Γ ; �)]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E2)

t :M
p

∪ [(Γ ; � )]
p

Figure 1.9: Non-standard deoration of ISL.
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Theorem 1.18 Let � :: [(Γ
i

; �
i

)
i

] be a derivation in ISL, suh that �

? :: t : [(Γ
i

; �
i

)
i

]
p

. For every i,

there exists a derivation �

i :: Γ
i

⊢ �
i

in LJns, suh that it admits the same (non-standard) deoration as

�, i.e. suh that (�i)? :: (Γ
i

)p ⊢ t : �
i

.

Proof. By indution on �. ⊣

1.2.1 Strong normalization of ISL

Derivations of ISL are shown to be strongly normalizing in [15, 21℄, using the notion of \normal deriva-

tion" as de�ned for IL. Pruning is eliminated by ommuting onversions as in IL, and redexes of logial

onnetives are redued as shown below. The substitution notation S(�1; �0) bears the usual meaning
4

.

�0 :: [(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

] �1 :: [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

,→→ S(�1; �0) :: [(Γi ; �i)i]

M∪ [(Γ ; �); (Γ ; � )]
(∩I)

M∪ [(Γ ; � ∩ � )]
(∩E1)

M∪ [(Γ ; �)]

,→∩

M∪ [(Γ ; �); (Γ ; � )]
(P)

M∪ [(Γ ; �)]

In [15℄ it is also noted that, in a (P)-free derivation, the strutural rules of weakening and exhange

an all be moved up above the logial rules, so that an axiom is followed by a sequene of weakenings,

whih is followed by a sequene of exhanges, whih is followed by logial rules. Suh derivations are

alled anonial. It may be neessary to bring a derivation to anonial form for redexes to be properly

revealed. Nonetheless, redution steps preserve anonial forms, provided that any pruning generated by

redution is eliminated.

To show the strong normalization of ISL, we use Theorem 1.18 and the strong normalization of LJ.

Theorem 1.19 A derivation in ISL is strongly normalizing.

Proof. A detailed proof is given in [21℄. ⊣

1.2.2 Correspondene between ISL and IT

A theorem whih gives a orrespondene between ISL and IT through the deoration of ISL is stated and

proved in [15℄.

Theorem 1.20 If � :: [(�i1; : : : ; �
i

m

; �
i

)
i

] is in ISL, then �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)
i

]
x1;:::; xm if and only

if �

i

:: { x1 : �i1; : : : ; xm : �i
m

} ⊢ t : �
i

in IT, for every i.

Proof. The \only if" diretion is shown by indution on �, while the \if" diretion is shown by indution

on t. ⊣

4

Here it stands for the derivation obtained from �0 by substituting spei� instanes of axioms [(�
i

; �
i

)
i

] by �1 and

then possibly eliminating some instanes of weakening and exhange.



CHAPTER 2

Union Types

We start by presenting a type system with intersetion and union types in natural dedution style. The

system assigns intersetion and union types to terms of the untyped �-alulus Λ. It is introdued in [2℄,

where it is denoted N, as an extension of IT

ù

with rules for union.

De�nition 2.1 (IUT

ù

) (i) The set T
IUT

ù

of intersetion and union types is generated by the grammar

T
IUT

ù

∋ � ::= � |! |� → � |�∩� |�∪�, where � belongs to a ountable set of type variables. As usual, we

use �; �; , et. to denote type variables and �; �; �, et. to denote types. Impliation is right assoiative,

while intersetion and union are left assoiative and preede over impliation.

(ii) A typing statement is an expression t : �, where t ∈ Λ and � ∈ T
IUT

ù

. Term t is alled the

subjet and type � the prediate of the typing statement. A basi typing statement x : � is a typing

statement whose subjet is a variable. A basis is a set of basi typing statements suh that the subjets

are pairwise distint. If B is a basis, then dom(B) denotes the set of term variables whih are subjets

of basi typing statements in B.

(iii) The type system IUT

ù

proves statements B ⊢ t : �, where B is a basis and t : � a typing

statement. We all B the assumptions and t : � the suedent of B ⊢ t : �. The rules of the system are

shown in Figure 2.1.

Remark 2.2 (i) The system is additive, i.e. all rules with more than one premise are ontext-sharing.

(ii) Contration (C) is derivable and equivalent to a union redex (∪IE), as shown below.

B; x : �; y : � ⊢ t : �
(C)

B; x : � ⊢ t[x=y] : �
❀

(ax)

B; x : � ⊢ x : �
(∪I)

B; x : � ⊢ x : � ∪ � B; x : �; y : � ⊢ t : � B; x : �; y : � ⊢ t : �
(∪E)

B; x : � ⊢ t[x=y] : �

The next lemma shows that a ut rule is also derivable.

Lemma 2.3 (Substitution lemma) If B ⊢ t : � and B; x : � ⊢ u : � , then B ⊢ u[t=x] : � .

Proof. Shown from hypotheses in [2℄ by employing a union redex. ⊣

As noted in [2℄, if one is interested in the proof-theoretial properties of the system, it an be useful

to reformulate it in a sequent alulus style, i.e. to present it with left and right introdution rules and

17
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(ax)

B; x : � ⊢ x : �
(ù)

B ⊢ t : !

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

B ⊢ t : �
(∪I1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪I2)
B ⊢ t : � ∪ �

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

B ⊢ u[t=x] : �

Figure 2.1: The type system IUT

ù

in natural dedution style.

in a multipliative manner. The sequent alulus version is presented in Figure 2.2. Statements B ⊢ t : �
are now alled sequents. We write B;B

′
to mean that B∪B′

is still a basis, i.e. if x ∈ dom(B)∩dom(B′),
then there is a unique �, suh that x : � ∈ B and x : � ∈ B

′
. In (→L), variable y in the onlusion

sequent is fresh with respet to the derivations proving the premise sequents.

(ax)

B; x : � ⊢ x : �
(ù)

B ⊢ t : !

B ⊢ t : � B

′
; x : � ⊢ u : �

(→L)

B; B

′
; y : � → � ⊢ u[yt=x] : �

B; x : � ⊢ t : �
(→R)

B ⊢ �x: t : � → �

B; x : � ⊢ t : �
(∩L1)

B; x : � ∩ � ⊢ t : �

B; x : � ⊢ t : �
(∩L2)

B; x : � ∩ � ⊢ t : �

B ⊢ t : � B

′ ⊢ t : �
(∩R)

B; B

′ ⊢ t : � ∩ �

B; x : � ⊢ t : � B

′
; x : � ⊢ t : �

(∪L)
B; B

′
; x : � ∪ � ⊢ t : �

B ⊢ t : �
(∪R1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪R2)

B ⊢ t : � ∪ �

B ⊢ t : � B

′
; x : � ⊢ u : �

(ut)

B; B

′ ⊢ u[t=x] : �

Figure 2.2: The type system IUT

ù

in sequent alulus style.
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Remark 2.4 (i) In the sequent alulus formulation, the system is multipliative, i.e. all the rules with

more than one premise are ontext-free.

(ii) Contration (C) is still derivable and equivalent to a ut rule.

B; x : �; y : � ⊢ t : �
(C)

B; x : � ⊢ t[x=y] : �
❀

(ax)

x : � ⊢ x : � B; x : �; y : � ⊢ t : �
(ut)

B; x : � ⊢ t[x=y] : �

The following remark, de�nition, and proposition hold for both formulations of the system.

Remark 2.5 The proposition \if B ⊢ t : � is provable, then FV (t) ⊆ dom(B)" is not valid due to the

(ù)-rule. Removing the (ù)-rule, though, retrieves the validity of the proposition.

De�nition 2.6 (Similar derivations) A derivation �

′
is similar to a derivation � if and only if �

′
an

be obtained from � by adding basi typing statements to the bases or renaming term variables.

Similar derivations share the same derivation tree, i.e. the same sequene of rules, and di�er only in

the bases and the term variables.

Proposition 2.7 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respet to �, then there exists

a �

′ :: B; y : � ⊢ t[y=x] : � similar to �.

(ii) (Weakening) If � :: B ⊢ t : � and B ⊆ B

′
, where B

′
is a basis, then there exists a �

′ :: B′ ⊢ t : �
similar to �.

Proof. Either by indution on � (for both (i) and (ii)) or as explained in [2℄. ⊣

It is shown in detail in [2℄ that the two formulations of the system are equivalent, i.e. that B ⊢ t : �
is proved in natural dedution if and only if B ⊢ t : � is proved in sequent alulus. It is interesting to

notie that, in order to derive the ut rule in natural dedution, a union redex is employed. If y is fresh

with respet to the derivation proving B

′
; x : � ⊢ u : � and y 6∈ dom(B), the following is a derivation of

ut in natural dedution.

B ⊢ t : �
(W)

B; B

′ ⊢ t : �
(∪I)

B; B

′ ⊢ t : � ∪ �

B

′
; x : � ⊢ u : �

(Ren)+(W)

B; B

′
; y : � ⊢ u[y=x] : �

B

′
; x : � ⊢ u : �

(Ren)+(W)

B; B

′
; y : � ⊢ u[y=x] : �

(∪E)
B; B

′ ⊢ u[y=x][t=y] = u[t=x] : �

The dashed lines refer to Proposition 2.7 and the terms u[y=x][t=y] and u[t=x] in the �nal statement are

idential, sine y 6∈ FV (u).
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2.1 Subjet redution

As argued in [2℄, the type system IUT

ù

is not invariant under �-redution of subjets, meaning that from

B ⊢ t : � and t ։
�

u we annot infer B ⊢ u : �. It is the union elimination rule that is blamed for this

lak of invariane; the substitution that it ontains auses the loss of orrespondene between subterms

and subderivations. In fat, many ourrenes of the same subterm t in the term typed by the onlusion

orrespond to a unique subderivation (premise) typing t.

B ⊢ t : � ∪ � B; x : � ⊢ (: : : x : : : x : : :) = u : � B; x : � ⊢ (: : : x : : : x : : :) = u : �
(∪E)

B ⊢ (: : : t : : : t : : :) = u[t=x] : �

If one attempted to show subjet redution in IUT

ù

by indution on B ⊢ t : �, as is done for IT

ù

in [13℄, the many-to-one orrespondene disussed above would indue a problem. For, supposing a redex

in t were redued, so that t →
�

t

′
and u[t=x] →

�

(: : : t′ : : : t : : :), the indution hypothesis would give

B ⊢ t′ : � ∪ � and then an appliation of union elimination with B ⊢ t′ : � ∪ � as major premise and the

same minor premises as before would derive B ⊢ (: : : t′ : : : t′ : : :) = u[t′=x] : � whih is obviously not the

required onlusion.

The example given in [2℄ is that one an assign the type

(� → � → �) ∩ (�→ �→ �) → (� → � ∪ �) → �→ �

to both �xyz: x ((�w:w) yz)((�w:w) yz) and �xyz: x (yz)(yz), but neither to �xyz: x (yz)((�w:w) yz),
nor to �xyz: x ((�w:w) yz)(yz). Hene, the system IUT

ù

is not invariant under �-expansion of subjets,

either.

The solution proposed in [2℄ is a di�erent notion of �-redution, alled parallel �-redution, whih,

roughly speaking, allows redutions performed simultaneously on all the ourrenes of t in u[t=x]. In

other words, a ontration step in now de�ned in suh a way that u[t=x] → u[t′=x]. The system is proved

to be invariant under parallel �-redution.

For the preise de�nition of \parallel redution", whih is somewhat stronger than the informal de-

sription given above, we need some preliminary de�nitions.

1. A non-empty set F of redex ourrenes in a term t is alled uniform, if, for every redex R of t,

either all ourrenes of R in t are in F or no ourrene of R in t is in F .

2. If t→
�

u and R is a redex ourrene in t, the set of residuals of R in u is the (possibly empty) set

of redexes whih are either instanes of R or opies of it generated by the redution.

3. A omplete development of (t;F), where F is a set of redex ourrenes in t, is a redution suh

that all and only residuals of redexes in F are redued.

Formal de�nitions of these notions an be found in [4℄.

De�nition 2.8 (Parallel Redution) The redution relation ⇒
p

over �-terms is de�ned as follows:

t⇒
p

u if and only if there exists a uniform set F of redex ourrenes in t, suh that (t;F) ։
pl

u, where

(t;F) ։
pl

u is the omplete development of (t;F).

Invariane of typing under parallel redution is then proved in [2℄ for IUT

ù

.
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Theorem 2.9 If B ⊢ t : � and t⇒
p

u, then B ⊢ u : �.

The proof is given for the sequent alulus formulation of the system, but the theorem holds for both

formulations, sine they are equivalent.

2.2 Cut elimination

In this setion we onsider the system in Figure 2.2 with the (ù)-rule exluded and ontration expliitly

inluded; let us denote it IUT

C

. We will show ut elimination in IUT

C

by means of Gentzen's method [12℄.

The need to remove the (ù)-rule and admit the ontration rule will be justi�ed after the details of the

proof have been provided. The ut elimination proof will be derived as a onsequene of a multiut

elimination proof in the type system IUT

′
C

, whih is de�ned below.

De�nition 2.10 (IUT

′
C

) The type system IUT

′
C

is de�ned by the rules in Figure 2.2, if we exlude the

(ù)-rule and inlude ontration and also substitute the ut rule by a multiut rule, alled \mix rule".

B; x : �; y : � ⊢ t : �
(C)

B; x : � ⊢ t[x=y] : �

B ⊢ t : � B

′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

B; B

′ ⊢ u[t=x1; : : : ; t=xm] : �

In the mix rule we are allowed to eliminate any number of basi typing statements with prediate �

from the basis of the right premise and not just a single suh typing statement as in the ut rule. The

set B

′
may also ontain basi typing statements with prediate �. Type � is alled the mix-type.

Theorem 2.11 The systems IUT

C

and IUT

′
C

are equivalent.

Proof. It suÆes to show that (i) the ut rule an be derived in IUT

′
C

and (ii) the mix rule an be

derived in IUT

C

. Sine a ut an be seen as a speial ase of mix, (i) is obvious. For (ii) we show that a

mix an be simulated in IUT

C

by onseutive ontrations followed by a ut.

B ⊢ t : �

B

′
; x1 : �; x2 : �; x3 : �; : : : ; x

m

: � ⊢ u : �
(C)

B

′
; x2 : �; x3 : �; : : : ; x

m

: � ⊢ u[x2=x1] : �
(C)

B

′
; x3 : �; : : : ; x

m

: � ⊢ u[x2=x1][x3=x2] : �

.

.

.

B

′
; x

m

: � ⊢ u[x2=x1][x3=x2] : : : [xm=xm−1] : �
(ut)

B;B

′ ⊢ (u[x2=x1][x3=x2] : : : [xm=xm−1])[t=xm] = u[t=x1; : : : ; t=xm] : �

When the mix involvesm eliminations of basi typing statements, the number of onseutive ontrations

is m− 1. ⊣

Remark 2.12 (i) In IUT

′
C

(resp. IUT

C

) the only rule that an generate redexes in the term typed by

its onlusion is the mix-rule (resp. the ut-rule). So, a derivation in IUT

′
C

without mix (resp. in IUT

C

without ut) types a normal term.
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(ii) A derivation in IUT

′
ùC

=IUT

′
C

+ (ù) without mix (resp. in IUT

ùC

=IUT

C

+ (ù) without ut)

does not neessarily type a normal term, sine the (ù)-rule may introdue a term with redexes whih are

transfered, modulo substitutions

1

, to the root-term.

It is easy to hek that Proposition 2.7 holds for IUT

′
C

, as well.

Proposition 2.13 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respet to �, then there

exists a �

′ :: B; y : � ⊢ t[y=x] : � similar to �.

(ii) (Weakening) If � :: B ⊢ t : � and B ⊆ B

′
, where B

′
is a basis, then there exists a �

′ :: B′ ⊢ t : �
similar to �.

Proof. By indution on � for both (i) and (ii). ⊣

Remark 2.14 The similarity of � and �

′
in Proposition 2.13 implies that, if � is mix-free, then �

′
is

mix-free, too.

De�nition 2.15 (Degree of type) The degree d(�) of a type � ∈ T
IUT

ù

\ {!} is de�ned indutively as

follows: (i) d(�) = 0, for every type variable �, and (ii) d(� ∗ �) = d(�) + d(�) + 1, where ∗ ∈ {→;∩;∪}.

De�nition 2.16 (Degree, rank, and measure of mix) Consider a mix with mix-type �.

B ⊢ t : � B

′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

B; B

′ ⊢ u[t=x1; : : : ; t=xm] : �

(i) The degree d of the mix is the degree d(�) of �.
(ii) The left rank lr of the mix is the largest number of onseutive sequents rooted at the left premise,

suh that eah has prediate � in the suedent.

(iii) The right rank rr of the mix is the largest number of onseutive sequents rooted at the right

premise, suh that eah has at least one basi typing statement from x1 : �; : : : ; x
m

: � in the assumptions.

(iv) The rank r of the mix is the sum lr + rr of the left and right ranks of the mix.

(v) The measure of the mix is the ordered pair (d; r), where d is the degree and r the rank of the mix.

We note that the smallest possible degree of a mix is 0, while the smallest possible rank is 2.

Example 2.17 Let � = �→ �; � = � → � , and � be the following derivation in IUT

′
C

.

x : � ⊢ x : �
(→R)

∅ ⊢ �x: x : �
x : � ⊢ x : �

(→R)

∅ ⊢ �x: x : �
(∩R)

∅ ⊢ �x: x : � ∩ �

y : � ⊢ y : � w : � ⊢ w : �
(→L)

y : �; z : � ⊢ zy : �
(∩L2)

y : � ∩ �; z : � ⊢ zy : �
(∩L1)

y : � ∩ �; z : � ∩ � ⊢ zy : �
(mix)

� :: ∅ ⊢ (�x: x)(�x:x) : �

The mix has degree d = d(� ∩ �) = 5 and rank r = lr + rr = 1 + 2 = 3. So, its measure is m = (5; 3).

1

These substitutions ome from the rules (C) or (→L), but do not generate new redexes.
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The next lemma is the main tool for eliminating the mix in IUT

′
C

.

Lemma 2.18 If � :: B ⊢ t : � is a derivation in IUT

′
C

with a mix as �nal rule and no other mix

ontained, then there is a mix-free derivation �

′ :: B ⊢ t

′ : � in IUT

′
C

, where t ։
�

t

′
. (Remark 2.12(i)

implies that t

′
is normal.)

Proof. In Appendix A. ⊣

De�nition 2.19 (Topmost mix or ut) A mix (resp. ut) in a derivation � of IUT

′
C

(resp. IUT

C

)

is alled topmost, if there is no other mix (resp. ut) above it in the tree of �.

Theorem 2.20 (Mix elimination in IUT

′
C

) For every derivation � :: B ⊢ t : � in IUT

′
C

, there is a

mix-free derivation �

′ :: B ⊢ t′ : �, where t։
�

t

′
.

Proof. Using Lemma 2.18, we suessively eliminate topmost mixes in �. In every elimination of a

topmost mix with subderivation �

h

the term typed by the root-sequent of �

h

redues to a normal term,

while the basis and type remain unhanged. Rules with a single mix-free premise \pass on" the redution

to their onlusion. [Rule (C): If t ։
�

t

′
, then t[x=y] ։

�

t

′[x=y]. Rule (→R): If t ։
�

t

′
, then

�x: t ։
�

�x: t

′
. Rules (∩L),(∪R): If t ։

�

t

′
in the premise, then t ։

�

t

′
in the onlusion.℄ Rules

with two mix-free premises also \pass on" the redution to their onlusion. [Rule (→L): If t։
�

t

′
and

u ։
�

u

′
, then u[yt=x] ։

�

u

′[yt′=x]. Rules (∩R),(∪L): If t ։
�

t0 in the left premise and t ։
�

t1 in the

right premise, then t0 = t1 = t

′
, sine mix-free derivations type normal terms and the normal form is

unique; so, we have t ։
�

t

′
in the onlusion.℄ If we run this proedure top-down in �, we eliminate all

mixes in a �nite number of steps and obtain a mix-free �

′ :: B ⊢ t′ : �, where t։
�

t

′
. ⊣

Theorem 2.21 (Cut elimination in IUT

C

) For every derivation � :: B ⊢ t : � in IUT

C

, there is a

ut-free derivation �

′ :: B ⊢ t′ : �, where t։
�

t

′
.

Proof. If (IUT

C

)

f

is the system IUT

C

without the ut-rule (ut-free) and (IUT

′
C

)

mf

is the system

IUT

′
C

without the mix-rule (mix-free), then (IUT

C

)

f

=(IUT

′
C

)

mf

. If � :: B ⊢ t : � in IUT

C

, then, by

Theorem 2.11, there is a �0 :: B ⊢ t : � in IUT

′
C

. So, by Theorem 2.20, there is a �

′
0 :: B ⊢ t′ : �, where

t։
�

t

′
, in (IUT

′
C

)

mf

. Sine (IUT

′
C

)

mf

=(IUT

C

)

f

, there is a �

′ = �

′
0 :: B ⊢ t′ : � in (IUT

C

)

f

. ⊣

Remark 2.22 The inlusion of ontration is neessary for the proof of ut elimination. For, if we

attempt to eliminate the ut shown below in the system IUT, whih is IUT

C

without (C), we see that

the tree with root-sequent x : (� → �) ∩ � ⊢ xx : � fails to omplete bottom-up without ut and without

ontration. The boxes mark further failures.

x : � ⊢ x : �
(∩L2)

x : (�→ �) ∩ � ⊢ x : �

y : � ⊢ y : � z : � ⊢ z : �
(→L)

x : �→ �; y : � ⊢ xy : �
(∩L1)

x : (�→ �) ∩ �; y : � ⊢ xy : �
(ut)

x : (�→ �) ∩ � ⊢ xx : �

not an axiom

∅ ⊢ y : � z : � ⊢ z : �
(→L)

x : �→ � ⊢ x x : �
(∩L1)

x : (�→ �) ∩ � ⊢ xx : �

not an axiom

∅ ⊢ x : � z : � ⊢ z : �
(→L)

x : �→ � ⊢ xx : �
(∩L1)

x : (�→ �) ∩ � ⊢ xx : �

annot proeed bottom-up

x : � ⊢ xx : �
(∩L2)

x : (�→ �) ∩ � ⊢ xx : �
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In IUT

C

we an prove the sequent x : (� → �) ∩ � ⊢ xx : � without ut, using the ontration-rule.

y : � ⊢ y : � z : � ⊢ z : �
(→L)

x : �→ �; y : � ⊢ xy : �
(∩L1)

x : (�→ �) ∩ �; y : � ⊢ xy : �
(∩L2)

x : (�→ �) ∩ �; y : (�→ �) ∩ � ⊢ xy : �
(C)

x : (�→ �) ∩ � ⊢ xx : �

We an establish this derivation-tree, if we onsider the ut as a speial ase of mix that eliminates a single

basi typing statement from the right premise and follow the method shown in the proof of Lemma 2.18.

The ontration-rule appears in ase A : (∩L).

Sine we an derive the ontration-rule in IUT using the ut-rule, the uts that annot be eliminated

in this system are essentially the ones that embody ontrations.

x : � ⊢ x : � B; x : �; y : � ⊢ t : �
(ut)

B; x : � ⊢ t[x=y] : �

These uts introdue substitutions of variables by variables, whih do not reate redexes, so they are learly

\good" uts. A derivation in IUT that ontains solely \good" uts types a normal term. Nonetheless, we

hoose to show a total ut elimination in IUT

C

than a partial ut elimination in IUT.

Given the neessity of ontration for the elimination of all uts, we an now justify the de�nition of

IUT

′
C

and explain why ut elimination in IUT

C

was shown through mix elimination in IUT

′
C

. Lemma 2.18

annot be proved for IUT

C

. In partiular, with ut in plae of mix, ase B : (C) : a does not work, sine

the ut-rule eliminates exatly one basi typing statement from the right premise.

�0 :: B ⊢ t : �

B

′
; x : �; y : � ⊢ u : �

(C)

�1 :: B′
; x : � ⊢ u[x=y] : �

(ut)

� :: B;B′ ⊢ u[x=y][t=x] : �

,→

�0 :: B ⊢ t : � B

′
; x : �; y : � ⊢ u : �

would need a (ut)

′

would need a sequent: B;B

′ ⊢ a term v = u[x=y][t=x] : �

On the other hand, trying to eliminate x : �; y : � by two onseutive uts, we wouldn't end up with two

uts of less measure than the initial ut. A shemati ounterexample is shown below.

�0 :: B ⊢ t : �

y : �

x : �; y : �

B

′
; x : �; y : � ⊢ u : �

(C)

�1 :: B′
; x : � ⊢ u[x=y] : �

(ut), m = (d(�); lr + 3)
� :: B;B′ ⊢ u[x=y][t=x] : �

,→
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�0 :: B ⊢ t : �

�0 :: B ⊢ t : �

y : �

x : �; y : �

B

′
; x : �; y : � ⊢ u : �

(ut)

′
, m

′ = (d(�); lr + 3) = m

B;B

′
; x : � ⊢ u[t=y] : �

(ut)

′′
, m

′′ = (d(�); lr + 3) = m

B;B

′ ⊢ u[t=y][t=x] : �

or

�0 :: B ⊢ t : �

�0 :: B ⊢ t : �

y : �

x : �; y : �

B

′
; x : �; y : � ⊢ u : �

(ut)

′
, m

′ = (d(�); lr + 2) < m

B;B

′
; y : � ⊢ u[t=x] : �

(ut)

′′
, m

′′ = (d(�); lr + 4) > m

B;B

′ ⊢ u[t=x][t=y] : �

The next remark sustains the neessity for exlusion of the (ù)-rule in order to gain ut elimination.

Remark 2.23 Cut elimination is not valid in IUT

ùC

, sine mix elimination is not valid in IUT

′
ùC

.

Lemma 2.18 annot be proved for IUT

′
ùC

beause a mix-free derivation in IUT

′
ùC

does not neessarily

type a normal term, as explained in Remark 2.12(ii). For example, in ase A : (∪L) : a we would have that

t0 �և u[z=y][t=x
j

] ։
�

t1, but without the restrition that t0 and t1 are normal and onsequently idential.

So, we wouldn't be able to apply (∪L) to �′
0 and �

′
1, as they would (possibly) type di�erent terms. This

problem would also arise in ases A : (∪L) : b, B : (∪L) : a, B : (∪L) : b, and B : (∩R).

2.3 Term haraterizations

In this setion we show three theorems whih haraterize �-terms aording to their typings in IUT

ùC

and

one theorem whih haraterizes terms that are typable in IUT

C

. The general shema of these theorems

is the following: \t is typable in IUT

ùC

(resp. IUT

C

) in suh and suh a way if and only if t has suh and

suh a property". The theorems for IUT

ùC

also hold for the systems IUT

ù

, IT

ùC

=IT+ (ù)+ (C), and

IT

ù

=IT+ (ù). The theorem for IUT

C

also holds for IUT= IUT

C

− (C), IT

C

=IT+ (C), and IT. The

theorems for IT

ù

and IT have already been proved in [13℄, where the systems are denoted DÙ and D,

respetively. Combining the theorems for IUT

ùC

and IT

ù

(resp. IUT

C

and IT), we dedue onlusions

of the form \t is typable in IUT

ùC

(resp. in IUT

C

) in a ertain way if and only if t is typable in IT

ù

(resp. in IT) in exatly the same way if and only if t belongs to a set of �-terms de�ned by a ertain

harateristi property".

All the type systems are onsidered in natural dedution style. They an be gathered into two

groups: the type systems IUT

ùC

, IUT

C

, IUT

ù

, IUT with intersetion and union types and the type sys-

tems IT

ùC

, IT

C

, IT

ù

, IT with intersetion types. Figure 2.3 displays the two retangles of type systems

where downward arrows remove ontration and rightward arrows remove the (ù)-rule.

We start by realling basi de�nitions and properties onerning �-terms and sets of �-terms.

Proposition 2.24 Every t ∈ Λ an be uniquely written in the form

�x1 : : : �xm: (�) t1 : : : tn (m;n > 0)

where t1; : : : ; tn ∈ Λ and � is either a variable or a redex.
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IUT

ùC

❄

IUT

ù

N in [2℄

✲
IUT

C

❄

IUT

✲
IT

ù

DÙ in [13℄

✲
IT

D in [13℄

IT

ùC

❄

✲
IT

C

❄

Figure 2.3: The type systems.

Proof. In [13℄. ⊣

De�nition 2.25 (Head redution) (i) If t = �x1 : : : �xm: (y) t1 : : : tn, for some variable y, i.e. if the

� in Proposition 2.24 is a variable, then t is in head normal form.

(ii) If t = �x1 : : : �xm: (�x:u) v t1 : : : tn, i.e. if the � in Proposition 2.24 is a redex, then the redex

(�x:u) v is alled the head redex of t.

(iii) The head redution of a term t is the (�nite or in�nite) sequene t0; t1; : : : ; tn; : : : , suh that

t0 = t and t

n+1 is obtained from t

n

by ontration of the head redex of t

n

, if suh a redex exists. If t

n

does not have a head redex, then t

n

is in head normal form and the sequene ends with t

n

. We write

t→
h

t

′
for a head ontration and t։

h

t

′
for a head redution.

By the above de�nition, a �nite head redution ends in head normal form.

De�nition 2.26 (Leftmost redution) The leftmost redution of a term t is the (�nite or in�nite)

sequene t0; t1; : : : ; tn; : : : , suh that t0 = t and t

n+1 is obtained from t

n

by ontration of the leftmost

redex of t

n

, if suh a redex exists. If t

n

does not have a leftmost redex, then t

n

is normal and the sequene

ends with t

n

. We write t→
l

t

′
for a leftmost ontration and t։

l

t

′
for a leftmost redution.

De�nition 2.27 (Quasi leftmost redution) An in�nite quasi leftmost redution of a term t is a

sequene t = t0; t1; : : : ; tn; : : : , suh that (∀n > 0)[t
n

→
�

t

n+1] and (∀n > 0)(∃p > n)[t
p

→
l

t

p+1].

If X ;Y ⊆ Λ, then Λ ⊇ X → Y is de�ned as follows: (∀t ∈ Λ)[ t ∈ X → Y ⇔ (∀u ∈ X )[tu ∈ Y] ]. It is
easily proved that, if X ′ ⊆ X and Y ⊆ Y ′

, then X → Y ⊆ X ′ → Y ′
.

De�nition 2.28 (Saturated and N -saturated sets) Let X ;N ⊆ Λ.
(i) The set X is alled saturated, if for every u; t; x; t1; : : : ; tn ∈ Λ:

(u[t=x]) t1 : : : tn ∈ X ⇒ (�x:u) t t1 : : : tn ∈ X

(ii) The set X is alled N -saturated, if for every u; x; t1; : : : ; tn ∈ Λ and t ∈ N :

(u[t=x]) t1 : : : tn ∈ X ⇒ (�x:u) t t1 : : : tn ∈ X

Proposition 2.29 Let X ;Y;N ⊆ Λ.
(i) If Y is saturated (resp. N -saturated), then X → Y is saturated (resp. N -saturated).

(ii) If X ;Y are saturated (resp. N -saturated), then X∩Y and X∪Y are saturated (resp. N -saturated).
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Proof. Easy to show using De�nition 2.28. ⊣

De�nition 2.30 (Interpretation and N -interpretation) (i) An interpretation I is a funtion whih

assoiates with eah type variable � a saturated |�|I ⊆ Λ.

(ii) If N ⊆ Λ, an N -interpretation I is a funtion whih assoiates with eah type variable � an

N -saturated |�|I ⊆ Λ.

An interpretation (resp. N -interpretation) I an be extended, so that it assoiates with eah type

� a saturated (resp. N -saturated) subset of Λ. Given the images of type variables by de�nition and

letting |!|I = Λ, we extend I indutively as follows: |� → � |I = |�|I → |� |I , |� ∩ � |I = |�|I ∩ |� |I , and
|� ∪ � |I = |�|I ∪ |� |I . The soundness of this extension is ensured by Proposition 2.29. From now on,

given an interpretation (resp. N -interpretation) I, we will write |�| instead of |�|I .
The next two lemmas play a key role in proving the four entral theorems of this setion.

Lemma 2.31 (Adequay lemma 1) Let � :: x1 : �1; : : : ; xm : �
m

⊢ u : � be a derivation in IUT

ùC

and I be an interpretation. If t1 ∈ |�1|; : : : ; tm ∈ |�
m

|, then u[t1=x1; : : : ; tm=xm] ∈ |� |.

Proof. By indution on �. For the base ase and the ases of the impliation and intersetion rules, we

refer to [13℄. We show the rest of the ases, writing B for x1 : �1; : : : ; xm : �
m

.

.

B; y : �
m

⊢ u : �
(C)

B ⊢ u[x
m

=y] : �

The IH gives that u[t
j

=x

j

; t

m

=y] ∈ |� |, where \t
j

=x

j

" stands for the substitutions \t1=x1; : : : ; tm=xm".

It is u[x
m

=y][t
j

=x

j

] = u[t
j

=x

j

; t

m

=y] ∈ |� |.

.

B ⊢ u : �
(∪I)

B ⊢ u : � ∪ �

By the IH, we have that u[t
j

=x

j

] ∈ |� | ⊆ |� ∪ �|.

.

B ⊢ t : � ∪ � B; y : � ⊢ u : � B; y : � ⊢ u : �
(∪E)

B ⊢ u[t=y] : �

By the IH, we have that t[t
j

=x

j

] ∈ |� ∪�|. If t[t
j

=x

j

] ∈ |� |, the IH gives that u[t
j

=x

j

; t[t
j

=x

j

]=y] ∈ |�|.
It is then u[t=y][t

j

=x

j

] = u[t
j

=x

j

; t[t
j

=x

j

]=y] ∈ |�|. If t[t
j

=x

j

] ∈ |�|, we proeed in a similar manner. ⊣

Lemma 2.32 (Adequay lemma 2) Let � :: x1 : �1; : : : ; xm : �
m

⊢ u : � be a derivation in IUT

C

,

N be a subset of Λ, and I be an N -interpretation, suh that |�| ⊆ N , for every type � 6= !. If

t1 ∈ |�1|; : : : ; tm ∈ |�
m

|, then u[t1=x1; : : : ; tm=xm] ∈ |� |.

Proof. By indution on �. The most interesting ase is the (→I) ase where the hypothesis \|�| ⊆ N ,

for every type � of IUT

C

" is used (see [13℄). The rest ases work as in the proof of Lemma 2.31. ⊣

We ontinue with some basi de�nitions that onern intersetion and union types.
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De�nition 2.33 (Positive and negative ourrenes) The positive and negative ourrenes of a

type variable or of ! in a type � are de�ned by indution on � as follows:

1. If � = � (or !), then the ourrene of � (or !) in � is positive.

2. If � = � → �, then the positive (resp. negative) ourrenes of a type variable or ! in � are positive

(resp. negative) ourrenes in �, while the positive (resp. negative) ourrenes of a type variable or !

in � are negative (resp. positive) ourrenes in �.

3. If � = � ∗ �, where ∗ is intersetion or union, then the positive (resp. negative) ourrenes of a

type variable or ! in � or � are positive (resp. negative) ourrenes in �.

De�nition 2.34 (Final ourrenes) The �nal ourrenes of a type variable or of ! in a type � are

de�ned by indution on � as follows:

1. If � = � (or !), then the ourrene of � (or !) in � is �nal.

2. If � = � → �, then the �nal ourrenes of a type variable or ! in � are �nal ourrenes in �.

3. If � = � ∩ �, then the �nal ourrenes of a type variable or ! in � or � are �nal ourrenes in �.

4. If � = � ∪ �, then no ourrene of a type variable or ! in � is �nal.

De�nition 2.35 (Non-trivial types) A type is alled non-trivial, if it ontains a �nal ourrene of

some type variable; otherwise, it is alled trivial.

Aording to the above de�nitions, the non-trivial types an be de�ned indutively as follows: (i) all

type variables are non-trivial, (ii) if � is non-trivial, then � → � is non-trivial, for every �, and (iii) if

� or � are non-trivial, then � ∩ � is non-trivial. Similarly, the trivial types an be de�ned indutively

as follows: (i) ! is trivial, (ii) if � is trivial, then � → � is trivial, for every �, (iii) if � and � are both

trivial, then � ∩ � is trivial, and (iv) � ∪ � is trivial, for every � and � .

We an now state the �rst of the four theorems.

Theorem 2.36 (Head normal form theorem) A term t admits a non-trivial type in IUT

ùC

if and

only if its head redution is �nite.

To prove the \only if" diretion of the this theorem, we need the following lemma.

Lemma 2.37 Let N0;N ⊆ Λ be suh that: 1. N0 ⊆ N , 2. N0 ⊆ Λ → N0, 3. N0 → N ⊆ N , and 4. N
is saturated. If I is an interpretation, suh that |�| = N , for every type variable �, then: (i) N0 ⊆ |�|,
for every type �, and (ii) |�| ⊆ N , for every non-trivial type �.

Proof. (i) By indution on �. We only show the union ase and for the other ases we refer to [13℄. If

� = � ∪ �, then, using the IH, we have N0 ⊆ |� | ⊆ |�|.
(ii) By indution on the non-trivial �. Sine union types are trivial, we refer to [13℄ for the whole

indution. ⊣

For the \if" diretion of the head normal form theorem we will use the next two results.

Proposition 2.38 Every term in head normal form admits a non-trivial type in IT

ù

.

Proof. We denote T
IT

ù

the set of types � ::= � | ! | � → � | �∩�. Let u = �x1 : : : �xm: (y) t1 : : : tn be a

term in head normal form and T
IT

ù

∋ � = ! → : : :→ ! → � = !

(n) → �. If B = x1 : �1; : : : ; xm : �
m

, for

some �1; : : : ; �m ∈ T
IT

ù

, we an apply impliation elimination n times and then impliation introdution

m times, as shown below, to type u in IT

ù

by the non-trivial type �1 → : : :→ �

m

→ �.
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B; y : � ⊢ y : � B; y : � ⊢ t1 : !
(→E)

B; y : � ⊢ (y) t1 : ! (n−1) → � B; y : � ⊢ t2 : !
(→E)

B; y : � ⊢ (y) t1t2 : ! (n−2) → �

.

.

.

B; y : � ⊢ (y) t1 : : : tn : �
(→I)

y : � ⊢ u : �1 → : : :→ �

m

→ �

⊣

Theorem 2.39 If B ⊢ t : � in IT

ù

and t =
�

t

′
, then B ⊢ t′ : � in IT

ù

.

Proof. In [13℄. ⊣

We an now provide the proof of Theorem 2.36.

Proof of Theorem 2.36. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

ùC

with �

non-trivial. Also, let N0 and N be the following subsets of Λ.

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ Λ }

N = { t ∈ Λ | the head redution of t is �nite }

These N0;N satisfy onditions 1-4 of Lemma 2.37 (proof in [13℄). So, if we onsider an interpretation

I, suh that |�| = N , for every type variable �, we have that N0 ⊆ |�
j

|, for every j from 1 to m, and

|� | ⊆ N . Sine x

j

∈ N0 ⊆ |�
j

|, Lemma 2.31 (Adequay lemma 1) implies that t[x
j

=x

j

] = t ∈ |� | ⊆ N ,

i.e. the head redution of t is �nite.

(⇐): If the head redution of t is �nite, then t ։
h

t

′
, for some t

′
in head normal form. By Proposi-

tion 2.38 we infer that t

′
admits a non-trivial type in IT

ù

, i.e. that B ⊢ t

′ : � in IT

ù

, for some basis B

and some non-trivial type � ∈ T
IT

ù

. Theorem 2.39 then implies that B ⊢ t : � in IT

ù

, so �nally B ⊢ t : �
in IUT

ùC

. ⊣

The head normal form theorem also holds for systems IT

ù

, IT

ùC

, and IUT

ù

, as the following theorem

states.

Theorem 2.40 A term t admits a non-trivial type in IT

ù

(resp. IT

ùC

, IUT

ù

) if and only if its head

redution is �nite.

Proof. If t admits a non-trivial type in IT

ù

(resp. IT

ùC

, IUT

ù

), then it also does in the \bigger" system

IUT

ùC

, so, by Theorem 2.36, its head redution is �nite. Conversely, if the head redution of t is �nite,

then t admits a non-trivial type in IT

ù

, as already shown in the proof of Theorem 2.36, so it also does in

the \bigger" systems IT

ùC

and IUT

ù

. ⊣

Theorems 2.36 and 2.40 imply that IUT

ùC

and IT

ù

assign non-trivial types to exatly the same set of

terms, namely to the ones whose head redution is �nite. Although IUT

ùC

is enrihed with union rules

and ontration ompared to IT

ù

, it annot assign non-trivial types to a larger set of terms than IT

ù

.

This is in a way expeted, sine union types are themselves trivial. Nonetheless, as the next example

shows, a term with a �nite head redution an have additional non-trivial types assigned to it in IUT

ùC

besides the non-trivial types assigned to it in IT

ù

.
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Example 2.41 We onsider the term t = �x: (�y: y)zx whose head redution is �nite, sine t→
h

�x: zx

and �x: zx is in head normal form. If B = x : �; z : �→ �, term t admits the non-trivial type � → � in

IT

ù

, as shown below.

B; y : �→ � ⊢ y : �→ �

(→I)

B ⊢ �y: y : (�→ �)→ �→ � B ⊢ z : �→ �

(→E)

B ⊢ (�y: y)z : �→ � B ⊢ x : �
(→E)

B ⊢ (�y: y)zx : �
(→I)

z : �→ � ⊢ t : �→ �

This typing is also valid in IUT

ùC

. But in IUT

ùC

we an get a seond non-trivial typing, as well, if

we substitute � by a union type �1 ∪ �2 in the above derivation.

The next basi theorem of this setion is the following.

Theorem 2.42 (Leftmost redution theorem) A term t admits a type � in IUT

ùC

in a ontext

x1 : �1; : : : ; xm : �
m

, where �1; : : : ; �m ontain no negative ourrenes of ! and � ontains no positive

ourrenes of !, if and only if its leftmost redution is �nite.

For the \only if" diretion of this theorem we will need the next lemma.

Lemma 2.43 Let N0;N be subsets of Λ suh that: 1. N0 ⊆ N , 2. N0 ⊆ N → N0, 3. N0 → N ⊆ N ,

and 4. N is saturated. If I is an interpretation, suh that N0 ⊆ |�| ⊆ N , for every type variable �, then:

(i) N0 ⊆ |�|, for every type � that ontains no negative ourrenes of !, and (ii) |�| ⊆ N , for every

type � that ontains no positive ourrenes of !.

Proof. We show (i) and (ii) simultaneously by indution on �. We only give the ase of union and for

the other ases we refer to [13℄. If � = � ∪� and � ontains no negative ourrenes of !, then � ontains

no negative ourrenes of ! and, using the IH for � , we get N0 ⊆ |� | ⊆ |�|. If � = � ∪ � and � ontains

no positive ourrenes of !, then neither � nor � ontain positive ourrenes of ! and, by the IH for �

and �, we have that |� | ⊆ N and |�| ⊆ N , respetively. So, we get that |�| = |� | ∪ |�| ⊆ N . ⊣

Corollary 2.44 If N0;N are subsets of Λ that satisfy onditions 1-4 of Lemma 2.43 and I is an inter-

pretation, suh that N0 ⊆ |�| ⊆ N , for every type variable �, then N0 ⊆ |�| ⊆ N , for every type � that

ontains no ourrenes of !.

For the \if" diretion of the leftmost redution theorem we will use the fat that every normal term

is typable in IT.

Proposition 2.45 If t is normal, then B ⊢ t : � in IT, for some type � and basis B.

Proof. In [13℄. ⊣

The proof of Theorem 2.42 an now be supplied.
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Proof of Theorem 2.42. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

ùC

, suh that

�1; : : : ; �m ontain no negative ourrenes of ! and � ontains no positive ourrenes of !. Also, let N
and N0 be the following subsets of Λ.

N = { t ∈ Λ | the leftmost redution of t is �nite }

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ N }

These N ;N0 satisfy onditions 1-4 of Lemma 2.43 (proof in [13℄). So, if we onsider an interpretation

I suh that |�| = N , for every type variable �, we have that N0 ⊆ |�
j

|, for every j from 1 to m, and

|� | ⊆ N . Sine x

j

∈ N0 ⊆ |�
j

|, Lemma 2.31 (Adequay lemma 1) implies that t[x
j

=x

j

] = t ∈ |� | ⊆ N ,

i.e. the leftmost redution of t is �nite.

(⇐): If the leftmost redution of t is �nite, then t =
�

t

′
, for some normal term t

′
. By Proposition 2.45

we have that x1 : �1; : : : ; xm : �
m

⊢ t

′ : � in IT, for some �1; : : : ; �m, and � in T
IT

. Consequently, we

have that x1 : �1; : : : ; xm : �
m

⊢ t′ : � in IT

ù

, for some �1; : : : ; �m with no negative ourrenes of ! and

some � with no positive ourrenes of !. Theorem 2.39 implies that x1 : �1; : : : ; xm : �
m

⊢ t : � in IT

ù

,

whih, in turn, implies that x1 : �1; : : : ; xm : �
m

⊢ t : � in the \bigger" system IUT

ùC

. ⊣

The leftmost redution theorem also holds for the systems IT

ù

, IT

ùC

, and IUT

ù

, as was the ase with

the head normal form theorem.

Theorem 2.46 A term t admits a type � in IT

ù

(resp. IT

ùC

, IUT

ù

) in a ontext x1 : �1; : : : ; xm : �
m

,

where �1; : : : ; �m ontain no negative ourrenes of ! and � ontains no positive ourrenes of !, if

and only if its leftmost redution is �nite.

Proof. If t admits suh a typing in IT

ù

(resp. IT

ùC

, IUT

ù

), then it also admits suh a typing in the

\bigger" system IUT

ùC

, so, by Theorem 2.42, its leftmost redution is �nite. Conversely, if the leftmost

redution of t is �nite, then t admits suh a typing in IT

ù

, as already shown in the proof of Theorem 2.42,

so it also does in the \bigger" systems IT

ùC

and IUT

ù

. ⊣

Obviously, the systems IUT

ùC

and IT

ù

type exatly the same terms in this spei� way, i.e. in a

ontext with types that ontain no negative ourrenes of ! and with a suedent type that ontains no

positive ourrenes of !. These terms are the ones whose leftmost redution is �nite.

The third basi theorem follows.

Theorem 2.47 (Quasi leftmost redution theorem) A term t admits a type � in IUT

ùC

in a on-

text x1 : �1; : : : ; xm : �
m

, where �1; : : : ; �m; � ontain no ourrenes of !, if and only there is no in�nite

quasi leftmost redution starting with t.

Proof. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

ùC

, suh that �1; : : : ; �m; � ontain

no ourrenes of !. Also, let N and N0 be the following subsets of Λ.

N = { t ∈ Λ | there is no in�nite quasi leftmost redution of t }

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ N}

These N ;N0 satisfy onditions 1-4 of Lemma 2.43 (proof in [13℄). So, if we onsider an interpretation

I, suh that |�| = N , for every type variable �, we have, by Corollary 2.44, that the interpretations of
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�1; : : : ; �m; � all ontain N0 and are ontained in N . Sine x

j

∈ N0 ⊆ |�
j

|, Lemma 2.31 implies that

t[x
j

=x

j

] = t ∈ |� | ⊆ N , i.e. there is no in�nite quasi leftmost redution of t.

(⇐): If there is no in�nite quasi leftmost redution of t, then the leftmost redution of t is �nite.

So, we have that t =
�

t

′
, for some normal term t

′
, and x1 : �1; : : : ; xm : �

m

⊢ t

′ : � in IT, for some

�1; : : : ; �m; � ∈ T
IT

. Therefore, it is x1 : �1; : : : ; xm : �
m

⊢ t

′ : � in IT

ù

with �1; : : : ; �m; � free of

ourrenes of !. Theorem 2.39 implies that x1 : �1; : : : ; xm : �
m

⊢ t : � in IT

ù

with �1; : : : ; �m; � free

of ourrenes of !. Therefore, it is also x1 : �1; : : : ; xm : �
m

⊢ t : � in IUT

ùC

with �1; : : : ; �m; � free of

ourrenes of !. ⊣

The quasi leftmost redution theorem holds for IT

ù

, IT

ùC

, and IUT

ù

, as well.

Theorem 2.48 A term t admits a type � in IT

ù

(resp. IT

ùC

, IUT

ù

) in a ontext x1 : �1; : : : ; xm : �
m

,

where �1; : : : ; �m; � ontain no ourrenes of !, if and only there is no in�nite quasi leftmost redution

starting with t.

Proof. Similar to the proofs of Theorems 2.40 and 2.46. ⊣

By Theorems 2.47 and 2.48, the systems IUT

ùC

and IT

ù

type the same set of �-terms in a way suh

that the types in the root-statement ontain no ourrenes of !; namely, the terms with no in�nite quasi

leftmost redution. Here again the \bigger" system does not \widen" the set of terms typable in the

spei� way in question.

The last and most important theorem of this setion is the following.

Theorem 2.49 (Strong normalization theorem) A term t is typable in IUT

C

if and only if it is

strongly normalizing.

For the \only if" diretion of this theorem we will use the next lemma.

Lemma 2.50 Let N0;N be subsets of Λ suh that: 1. N0 ⊆ N , 2. N0 ⊆ N → N0, 3. N0 → N ⊆ N ,

and 4. N is N -saturated. If I is an N -interpretation, suh that N0 ⊆ |�| ⊆ N , for every type variable

�, then N0 ⊆ |�| ⊆ N , for every type T
IUT

C

∋ � ::= � | � → � | � ∩ � | � ∪ �.

Proof. By indution on �. We only show the union ase and refer to [13℄ for the other ases. If � = � ∪�,
then, using the IH for � and �, we get that N0 ⊆ |� | ⊆ |�| = |� | ∪ |�| ⊆ N . ⊣

Proof of Theorem 2.49. (⇒): Let x1 : �1; : : : ; xm : �
m

⊢ t : � be a typing of t in IUT

C

. Also, let N
and N0 be the following subsets of Λ.

N = { t ∈ Λ | t is strongly normalizing}

N0 = { (x) t1 : : : tn | n > 0 and t1; : : : ; tn ∈ N }

These N ;N0 satisfy onditions 1-4 of Lemma 2.50 (proof in [13℄). So, if we onsider an N -interpretation

I, suh that |�| = N , for every type variable �, we have that N0 ⊆ |�
j

|, for all j from 1 to m, and

|� | ⊆ N . Sine x

j

∈ N0 ⊆ |�
j

|, Lemma 2.32 (Adequay lemma 2) implies that t[x
j

=x

j

] = t ∈ |� | ⊆ N ,

i.e. t is strongly normalizing.

(⇐): If t is strongly normalizing, then it is typable in IT (see proof in [13℄), so it is also typable in

IUT

C

. ⊣

The strong normalization theorem holds for IT, IT

C

, and IUT, as well.
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Theorem 2.51 A term t is typable in IT (resp. IT

C

, IUT) if and only if it is strongly normalizing.

Proof. If t is typable in IT (resp. IT

C

, IUT), then it is also typable in the \bigger" system IUT

C

, so, by

Theorem 2.49, it is strongly normalizing. Conversely, if t is strongly normalizing, then it is typable in

IT, so it is also typable in the \bigger" systems IT

C

and IUT. ⊣

The systems IUT

C

, IUT on one hand and IT

C

, IT on the other are all equivalent with respet to the

set of terms they type, as they all exlusively type the strongly normalizing terms. It is worth noting that

union types in IUT

C

and IUT do not type a larger set of terms than intersetion types in IT

C

and IT.

We an, therefore, say that type systems with intersetion and union types are onservative extensions

of orresponding type systems with intersetion types as far as typable terms are onerned.





CHAPTER 3

Toward a Logi for Union Types

Working in natural dedution style, the aim of this hapter is to �nd a logi orresponding to the minimal

type system with intersetion and union types IUT in the manner that the logis IL and ISL orrespond

to the type system IT. Toward this end, we may start by examining whether minimal intuitionisti logi,

denoted ML, would be suitable as suh a logi, although the failure in orrelating LJ with IT in Chapter

1 fores us to expet a negative result. The logi ML is the impliative, onjuntive, and disjuntive

fragment of intuitionisti logi; atually, it is the extension of LJ with rules for disjuntion.

De�nition 3.1 (ML) Considering formulas generated by the grammar � ::= � | � → � | � ∧ � | � ∨ �,
where � belongs to a ountable set of atomi formulas, the logial system ML proves statements Γ ⊢ �,

where Γ is a sequene of formulas. Its rules are shown in Figure 3.1. Impliation is, as usual, right

assoiative, while onjuntion and disjuntion are left assoiative and preede over impliation.

(ax)

� ⊢ �

Γ ⊢ �
(W)

Γ; � ⊢ �

Γ; �; �;∆ ⊢ �
(X)

Γ; �; �;∆ ⊢ �

Γ; � ⊢ �
(→I)

Γ ⊢ � → �

Γ ⊢ � → � Γ ⊢ �
(→E)

Γ ⊢ �

Γ ⊢ � Γ ⊢ �
(∧I)

Γ ⊢ � ∧ �
Γ ⊢ � ∧ �

(∧E1)

Γ ⊢ �
Γ ⊢ � ∧ �

(∧E2)

Γ ⊢ �

Γ ⊢ �
(∨I1)

Γ ⊢ � ∨ �
Γ ⊢ �

(∨I2)
Γ ⊢ � ∨ �

Γ ⊢ � ∨ � Γ; � ⊢ � Γ; � ⊢ �
(∨E)

Γ ⊢ �

Figure 3.1: The logi ML.

35
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ u : �
(∧I)

Γp ⊢ (t; u) : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ �1(t) : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ �2(t) : �

Γp ⊢ t : �
(∨I1)

Γp ⊢ i1(t) : � ∨ �
Γp ⊢ t : �

(∨I2)
Γp ⊢ i2(t) : � ∨ �

Γp ⊢ t : � ∨ � Γp; x : � ⊢ u : � Γp; y : � ⊢ v : �
(∨E)

Γp ⊢ ase t of i1(x)→ u ; i2(y)→ v : �

Figure 3.2: Standard deoration of ML.

Obviously, a standard deoration of ML with untyped �-terms does not deliver IUT. Suh a deo-

ration enodes all the logial onnetives and delivers the Curry type system �

∧∨
→ in the Curry-Howard

perspetive.

De�nition 3.2 (Standard deoration of ML) Let � :: Γ = �1; : : : ; �m ⊢ � be a derivation in ML.

By deorating ontexts bottom-up with distint variables starting with the sequene p = x1; : : : ; xm and

then deorating formulas to the right of \⊢" top-down with terms generated by the grammar

t ::= x | �x:t | tt | (t; t) | �1(t); �2(t) | i1(t); i2(t) | ase t of i1(x) → t ; i2(x) → t

we get a deorated derivation �

∗ :: Γp = x1 : �1; : : : ; xm : �
m

⊢ t : � . The deoration rules are presented

in Figure 3.2. When deorating ontexts bottom-up, the new variable in a (→I) premise or in a (∨E)

minor premise is fresh with respet to the variables in the branh onneting the onlusion to the root.

In addition, the fresh variables in two (∨E) minor premises are distint.

De�nition 3.3 (�

∧∨
→ ) Considering types built by impliation, onjuntion, and disjuntion, i.e. simple

types extended with disjuntion, the type system �

∧∨
→ proves statements B ⊢ t : �, where B is a basis,

t belongs to the set of terms generated by the grammar in De�nition 3.2, and � is a type. Its rules are

displayed in Figure 3.3.

The logi ML relates to the type system �

∧∨
→ through (standard) deoration and erasure in the same

way that LJ relates to �

∧
→.
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(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ u : �
(∧I)

B ⊢ (t; u) : � ∧ �
B ⊢ t : � ∧ �

(∧E1)

B ⊢ �1(t) : �
B ⊢ t : � ∧ �

(∧E2)

B ⊢ �2(t) : �

B ⊢ t : �
(∨I1)

B ⊢ i1(t) : � ∨ �
B ⊢ t : �

(∨I2)
B ⊢ i2(t) : � ∨ �

B ⊢ t : � ∨ � B; x : � ⊢ u : � B; y : � ⊢ v : �
(∨E)

B ⊢ ase t of i1(x)→ u ; i2(y)→ v : �

Figure 3.3: The type system �

∧∨
→ .

The next step is to attempt a orrespondene between ML and IUT through a non-standard deoration

of ML. The aim is to de�ne a deoration of ML that transforms a derivation of ML to one of IUT,

provided the additional onversion of onjuntion and disjuntion to intersetion and union, respetively.

The very rules of IUT ditate that we introdue a deoration whih enodes the impliation, ignores the

onjuntion and the introdution of disjuntion, and indues a substitution operation in the ase of the

elimination of disjuntion. The rules for suh a deoration are shown in Figure 3.4. As in the ase of

the non-standard deoration of LJ, the deoration terminates only in derivations of ML in whih the

(∧I) rule is applied to isomorphi premises and the (∨E) rule is applied to isomorphi minor premises;

otherwise, the deoration fails.

Obviously, it is only a proper subset of ML, denoted MLns, that admits a non-standard deoration

and this subset orresponds to IUT through deoration and erasure.

ML

MLns

IUT

✲
deoration

✛

erasure

In partiular, a derivation of MLns an be non-standardly deorated to provide a derivation of IUT, if

deorated ontexts are seen as sets, onjuntion and disjuntion are onverted to intersetion and union,
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(ax)

x : � ⊢ x : �

Γp ⊢ t : �
(W)

Γp; x : � ⊢ t : �

Γp; y : �; x : �; ∆q ⊢ t : �
(X)

Γp; x : �; y : �; ∆q ⊢ t : �

Γp; x : � ⊢ t : �
(→I)

Γp ⊢ �x: t : � → �

Γp ⊢ t : � → � Γp ⊢ u : �
(→E)

Γp ⊢ tu : �

Γp ⊢ t : � Γp ⊢ t : �
(∧I)

Γp ⊢ t : � ∧ �
Γp ⊢ t : � ∧ �

(∧E1)

Γp ⊢ t : �
Γp ⊢ t : � ∧ �

(∧E2)

Γp ⊢ t : �

Γp ⊢ t : �
(∨I1)

Γp ⊢ t : � ∨ �
Γp ⊢ t : �

(∨I2)
Γp ⊢ t : � ∨ �

Γp ⊢ t : � ∨ � Γp; x : � ⊢ u : � Γp; x : � ⊢ u : �
(∨E)

Γp ⊢ u[t=x] : �

Figure 3.4: Non-standard deoration of ML.

respetively, and strutural rules are ignored. Conversely, a derivation of IUT an be onverted to one of

MLns, if terms are erased, variable-free bases are seen as sequenes, intersetion and union are restored

to onjuntion and disjuntion, respetively, and strutural rules are added, if neessary. The example

below depits this bak and forth between MLns and IUT. Dashed lines denote onseutive strutural

rules and Γ = (� → �) ∧ ( → �); � ∨ , while B = x : (� → �) ∩ ( → �); y : � ∪ .

� ∨  ⊢ � ∨ 

Γ ⊢ � ∨ 

(� → �) ∧ ( → �) ⊢ (� → �) ∧ ( → �)

Γ; � ⊢ (� → �) ∧ ( → �)
(∧E)

Γ; � ⊢ � → �

� ⊢ �
Γ; � ⊢ �

(→E)

Γ; � ⊢ �

(� → �) ∧ ( → �) ⊢ (� → �) ∧ ( → �)

Γ;  ⊢ (� → �) ∧ ( → �)
(∧E)

Γ;  ⊢  → �

 ⊢ 

Γ;  ⊢ 
(→E)

Γ;  ⊢ �
(∨E)

Γ ⊢
MLns

�

deoration

−→
←−

erasure

B ⊢ y : � ∪ 

B; z : � ⊢ x : (� → �) ∩ ( → �)
(∩E)

B; z : � ⊢ x : � → � B; z : � ⊢ z : �
(→E)

B; z : � ⊢ xz : �

B; z :  ⊢ x : (� → �) ∩ ( → �)
(∩E)

B; z :  ⊢ x :  → � B; z :  ⊢ z : 
(→E)

B; z :  ⊢ xz : �
(∪E)

B ⊢
IUT

xz[y=z] = xy : �
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Derivations in ML\MLns do not admit a non-standard deoration. An example of suh a derivation

is shown below, where Γ = � → �;  → �; � ∨  and Γ? = x : �→ �; y :  → �; w : � ∨ .

� ∨  ⊢ � ∨ 

Γ ⊢ � ∨ 

�→ � ⊢ �→ �

Γ; � ⊢ �→ �

� ⊢ �
Γ; � ⊢ �

(→E)

Γ; � ⊢ �

 → � ⊢  → �

Γ;  ⊢  → �

 ⊢ 

Γ;  ⊢ 
(→E)

Γ;  ⊢ �
(∨E)

Γ ⊢ �

deoration

−→

w : � ∨  ⊢ w : � ∨ 

Γ? ⊢ w : � ∨ 

x : � → � ⊢ x : � → �

Γ?; z : � ⊢ x : � → �

z : � ⊢ z : �

Γ?; z : � ⊢ z : �
(→E)

Γ?; z : � ⊢ xz : �

y :  → � ⊢ y :  → �

Γ?; z :  ⊢ y :  → �

z :  ⊢ z : 

Γ?; z :  ⊢ z : 
(→E)

Γ?; z :  ⊢ yz : �
(∨E)

Γ? ⊢ ? : �

We onlude by the above that ML is not a logi for IUT via a deoration-erasure orrespondene.

Atually, a standard deoration of ML renders a orrespondene between ML and �

∧∨
→ and a non-standard

deoration of ML renders a orrespondene between MLns and IUT. This non-standard deoration marks

out the synhronous aspet of onjuntion and disjuntion by presupposing identially deorated premises

in (∧I) and identially deorated minor premises in (∨E), respetively. The orrespondene between MLns

and IUT manifests that intersetion and union orrespond to synhronous onjuntion and disjuntion,

respetively. It remains to examine synhronous onjuntion (or intersetion) and synhronous disjuntion

(or union) as logial onnetives. Toward this end, we aim to express MLns as a logi of its own by

introduing extensions with union of the logial systems IL and ISL.

3.1 Intersetion and Union Logi IUL

k

We de�ne Intersetion and Union Logi IUL

k

as an extension with union of Intersetion Logi IL. The

goal is to ahieve a orrespondene between IUL

k

and MLns. Sine MLns orresponds to IUT, this is

equivalent to showing a orrespondene between IUL

k

and IUT.

The following de�nition assumes the notions of overlapping kits and impliation between suh kits, of

paths, subtrees at ertain paths, terminal paths, di�erent paths, and of pruning, as given in 1.9.

De�nition 3.4 (IUL

k

) (i) A kit is a binary tree K ::= � | [K;K] with leaves � ::= � |� → � |�∩� |�∪�,
where � belongs to a ountable set of atomi formulas. We use K;H;L to denote kits and �; �; �, et. to

denote leaves.

(ii) The notation H [p := K] stands for the kit resulting from the substitution of subtree H

p

by K in

H. If q and p are paths in H and q is terminal, the left doubling of leaf H

q

at path p, denoted H

q

=

pl

, is

de�ned as H [p := [Hq

; H

p]], while the right doubling of leaf H

q

at path p, denoted H

q

=

pr

, is de�ned as

H [p := [Hp

; H

q ]].
(iii) The dedutive system IUL

k

derives judgements Γ ⊢ K, where the ontext Γ is a sequene of kits

and K is a kit. It extends IL with rules for doubling and union, as shown in Figure 3.5. The letter s

stands for either path l or path r and the index j in ontexts runs from 1 to m.
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(ax)

K ⊢ K

Γ ⊢ K
(W)

Γ; H ⊢ K
Γ; H1; H2;∆ ⊢ K

(X)

Γ; H2; H1;∆ ⊢ K

Γ ⊢ K
(P)

Γ\ps ⊢ K\ps
Γ ⊢ K

(D)

Γq=
ps

⊢ Kq

=

ps

Γ; H ⊢ K
(→I)

Γ ⊢ H → K

Γ ⊢ H → K Γ ⊢ H
(→E)

Γ ⊢ K

H

j

[p := [�
j

; �

j

]] ⊢ K[p := [�; � ]]
(∩I)

H

j

[p := �

j

] ⊢ K[p := � ∩ � ]

Γ ⊢ K[p := � ∩ � ]
(∩E1)

Γ ⊢ K[p := �]

Γ ⊢ K[p := � ∩ � ]
(∩E2)

Γ ⊢ K[p := � ]

Γ ⊢ K[p := �]
(∪I1)

Γ ⊢ K[p := � ∪ � ]

Γ ⊢ K[p := � ]
(∪I2)

Γ ⊢ K[p := � ∪ � ]

H

j

[p := �

j

] ⊢ K[p := � ∪ � ] H

j

[p := [�
j

; �

j

]]; K[p := [�; � ]] ⊢ L[p := [�; �]]
(∪E)

H

j

[p := �

j

] ⊢ L[p := �]

Figure 3.5: The logi IUL

k

.
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Remark 3.5 (i) The inlusion of the rule of doubling (D) is motivated by tehnial reasons, as was the

ase with the inlusion of pruning in the �rst plae. If q = p, then the (left or right) doubling of leaf

H

q = H

p = � at path p is H

p

=

pl

= H

p

=

pr

= H [p := [�; �]]. This gives the following speial ase of the

rule.

H

j

[p := �

j

] ⊢ K[p := � ]
(D)

H

j

[p := [�
j

; �

j

]] ⊢ K[p := [�; � ]]

(ii) If s; s

′ ∈ {l; r}, the following equalities hold.

1. For any ontext Γ where p 6= q, it is (Γ\ps)\qs
′

= (Γ\qs
′

)\ps.
2. For any ontext Γ where p 6∈ {q; q′} and q is terminal, it is (Γ\ps)q=

q

′
s

′ = (Γq=
q

′
s

′)\ps.
3. For any ontext Γ where p; p

′ 6∈ {q; q′} and p; q are terminal, it is (Γp=
p

′
s

)q=
q

′
s

′ = (Γq=
q

′
s

′)p=
p

′
s

.

4. For any ontext Γ where p is terminal, it is (Γp=
ps

)\ps = Γ.

Sine IUL

k

is intended to realize MLns, where disjuntion elimination is applied to isomorphi minor

premises, i.e. intended to express the synhronous aspet of disjuntion as union, the union elimination

rule in IUL

k

inorporates this isomorphism of minor premises by joining them together in the kit struture.

As was the ase with intersetion introdution, isomorphi or same premises oupy terminal paths in

the same kit, paths whih di�er only in the last letter. Therefore, union elimination has a single minor

premise and a non-standard deoration in IUL

k

always terminates.

: : : ⊢ t : � ∨ � : : : ; x : � ⊢ u : � : : : ; x : � ⊢ u : �
(∨E) in MLns

: : : ⊢ u[t=x] : �

: : : ⊢ t : � ∪ � : : : ; x : [�; � ] ⊢ u : [�; �]
(∪E) in IUL

k

: : : ⊢ u[t=x] : �

As already noted in the disussion of IL, the impliative rules a�et all terminal paths of ertain kits

and are alled global. Doubling alters the part of a kit rooted at the end of a spei� path, so it an be

ategorized as loal together with pruning. As far as union rules are onerned, the notation \ [p := ]"
used in their presentation urges a pakaging with intersetion rules whih are presented likewise. We

are inlined to say that union rules, as well, at on spei� paths and are therefore loal. However, a

more thorough investigation of rule globality and loality will later show that suh a lassi�ation is not

aurate in the ase of union elimination.

We next de�ne a non-standard deoration of IUL

k

whih enodes the impliation, brings about a

substitution in the ase of union elimination, and ignores all other rules. This deoration atually extends

the non-standard deoration of IL (see De�nition 1.11) to doubling and the union rules.

De�nition 3.6 (Non-standard deoration of IUL

k

) Suppose that � :: Γ = H1; : : : ; Hm

⊢ K is a

derivation in IUL

k

. By deorating ontexts bottom-up with distint variables starting with r = x1; : : : ; xm

and then deorating kits to the right of \⊢" top-down with terms in Λ, we get a deorated derivation

�

? :: Γ r = x1 : H1; : : : ; xm : H
m

⊢ t : K. The deoration rules are demonstrated in Figure 3.6. When

deorating ontexts bottom-up, the new variable in an (→I) premise or in a (∪E) minor premise is fresh

with respet to the variables in the branh onneting the onlusion to the root.
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(ax)

x : K ⊢ x : K

Γ r ⊢ t : K
(W)

Γ r; x : H ⊢ t : K

Γ r; y : H1; x : H2; ∆
r

′

⊢ t : K
(X)

Γ r; x : H2; y : H1; ∆
r

′

⊢ t : K

Γ r ⊢ t : K
(P)

(Γ\ps) r ⊢ t : K\ps
Γ r ⊢ t : K

(D)

(Γq=
ps

) r ⊢ t : Kq

=

ps

Γ r; x : H ⊢ t : K
(→I)

Γ r ⊢ �x: t : H → K

Γ r ⊢ t : H → K Γ r ⊢ u : H
(→E)

Γ r ⊢ tu : K

x

j

: H
j

[p := [�
j

; �

j

]] ⊢ t : K[p := [�; � ]]
(∩I)

x

j

: H
j

[p := �

j

] ⊢ t : K[p := � ∩ � ]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E1)

Γ r ⊢ t : K[p := �]

Γ r ⊢ t : K[p := � ∩ � ]
(∩E2)

Γ r ⊢ t : K[p := � ]

Γ r ⊢ t : K[p := �]
(∪I1)

Γ r ⊢ t : K[p := � ∪ � ]

Γ r ⊢ t : K[p := � ]
(∪I2)

Γ r ⊢ t : K[p := � ∪ � ]

x

j

: H
j

[p := �

j

] ⊢ t : K[p := � ∪ � ] x

j

: H
j

[p := [�
j

; �

j

]]; x : K[p := [�; � ]] ⊢ u : L[p := [�; �]]
(∪E)

x

j

: H
j

[p := �

j

] ⊢ u[t=x] : L[p := �]

Figure 3.6: Non-standard deoration of IUL

k

.

Remark 3.7 We an easily show that, if �

? :: Γr ⊢ t : K, then FV (t) ⊆ {r}.

We stress the fat that every derivation of IUL

k

admits a non-standard deoration. This is beause

the kit struture has been used to unite the isomorphi premises of (∧I), so that (∩I) has a single premise,

and also to unite the isomorphi minor premises of (∨E), so that (∪E) has a single minor premise.

3.1.1 Commutations of loal rules

As already mentioned in Chapter 1, a derivation of IL is de�ned in [18℄ as an equivalene lass of

derivations of pIL whih di�er only in the order of appliation of onseutive loal rules onerning

di�erent paths. A derivation of IUL

k

an be formally de�ned in a similar manner provided that (∪E)

is not onsidered loal. Thus, if the system introdued by De�nition 3.4 is alled \pre-Intersetion and

Union Logi with kits", denoted pIUL

k

, a more rigorous de�nition of IUL

k

an be pursued as follows.
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De�nition 3.8 (IUL

k

formal) Intersetion and Union Logi IUL

k

is the quotient set pIUL

k

=∼ of

pIUL

k

by the equivalene relation \∼" de�ned below

1

. Paths p and q are di�erent in ommutations that

involve only p and q, whereas p 6∈ {q; q′} in ommuting (P,D), p; p

′ 6∈ {q; q′} in ommuting (D,D), and

q 6∈ {p; p′} in ommuting (D,∩I), (D,∩E), (D,∪I).

Γ ⊢ K
(P)

ps

Γ\ps ⊢ K\ps
(P)

qs

′

(Γ\ps)\qs
′

⊢ (K\ps)\qs
′

∼

3.5(ii,1)

Γ ⊢ K
(P)

qs

′

Γ\qs
′

⊢ K\qs
′

(P)

ps

(Γ\qs
′

)\ps ⊢ (K\qs
′

)\ps

Γ ⊢ K
(P)

ps

Γ\ps ⊢ K\ps
(D)

q

′

(Γ\ps)q=
q

′
s

′ ⊢ (K\ps)q=
q

′
s

′

∼

3.5(ii,2)

Γ ⊢ K
(D)

q

′

Γq=
q

′
s

′ ⊢ Kq

=

q

′
s

′

(P)

ps

(Γq=
q

′
s

′)\ps ⊢ (Kq

=

q

′
s

′)\ps

Γ ⊢ K[q := [�; � ]]
(P)

ps

Γ\ps ⊢ (K[q := [�; � ]])\ps
(∩I)

q

(Γ\ps)\qs ⊢ (K[q := � ∩ � ])\ps

∼

3.5(ii,1)

Γ ⊢ K[q := [�; � ]]
(∩I)

q

Γ\qs ⊢ K[q := � ∩ � ]
(P)

ps

(Γ\qs)\ps ⊢ (K[q := � ∩ � ])\ps

Γ ⊢ K[q := � ∩ � ]
(P)

ps

Γ\ps ⊢ (K[q := � ∩ � ])\ps
(∩E)

q

Γ\ps ⊢ (K[q := �])\ps
∼

Γ ⊢ K[q := � ∩ � ]
(∩E)

q

Γ ⊢ K[q := �]
(P)

ps

Γ\ps ⊢ (K[q := �])\ps

Γ ⊢ K[q := �]
(P)

ps

Γ\ps ⊢ (K[q := �])\ps
(∪I)

q

Γ\ps ⊢ (K[q := � ∪ � ])\ps
∼

Γ ⊢ K[q := �]
(∪I)

q

Γ ⊢ K[q := � ∪ � ]
(P)

ps

Γ\ps ⊢ (K[q := � ∪ � ])\ps

Γ ⊢ K
(D)

p

′

Γp=
p

′
s

⊢ Kp

=

p

′
s

(D)

q

′

(Γp=
p

′
s

)q=
q

′
s

′ ⊢ (Kp

=

p

′
s

)q=
q

′
s

′

∼

3.5(ii,3)

Γ ⊢ K
(D)

q

′

Γq=
q

′
s

′ ⊢ Kq

=

q

′
s

′

(D)

p

′

(Γq=
q

′
s

′)p=
p

′
s

⊢ (Kq

=

q

′
s

′)p=
p

′
s

Γ ⊢ K[q := [�; � ]]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := [�; � ]])p=
p

′
s

(∩I)
q

(Γp=
p

′
s

)\qs ⊢ (K[q := � ∩ � ])p=
p

′
s

∼

3.5(ii,2)

Γ ⊢ K[q := [�; � ]]
(∩I)

q

Γ\qs ⊢ K[q := � ∩ � ]
(D)

p

′

(Γ\qs)p=
p

′
s

⊢ (K[q := � ∩ � ])p=
p

′
s

Γ ⊢ K[q := � ∩ � ]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := � ∩ � ])p=
p

′
s

(∩E)
q

Γp=
p

′
s

⊢ (K[q := �])p=
p

′
s

∼

Γ ⊢ K[q := � ∩ � ]
(∩E)

q

Γ ⊢ K[q := �]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := �])p=
p

′
s

1

Stritly speaking, the equivalene relation \∼" is the reexive and transitive losure of the relation given in 3.8.
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Γ ⊢ K[q := �]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := �])p=
p

′
s

(∪I)
q

Γp=
p

′
s

⊢ (K[q := � ∪ � ])p=
p

′
s

∼

Γ ⊢ K[q := �]
(∪I)

q

Γ ⊢ K[q := � ∪ � ]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := � ∪ � ])p=
p

′
s

Γ ⊢ K[p := [�; � ]][q := [�; �]]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := [�; �]]
(∩I)

q

(Γ\ps)\qs ⊢ K[p := � ∩ � ][q := � ∩ �]

∼

3.5(ii,1)

Γ ⊢ K[p := [�; � ]][q := [�; �]]
(∩I)

q

Γ\qs ⊢ K[p : [�; � ]][q := � ∩ �]
(∩I)

p

(Γ\qs)\ps ⊢ K[p := � ∩ � ][q := � ∩ �]

Γ ⊢ K[p := [�; � ]][q := � ∩ �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := � ∩ �]
(∩E)

q

Γ\ps ⊢ K[p := � ∩ � ][q := �]

∼

Γ ⊢ K[p := [�; � ]][q := � ∩ �]
(∩E)

q

Γ ⊢ K[p := [�; � ]][q := �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := �]

Γ ⊢ K[p := [�; � ]][q := �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := �]
(∪I)

q

Γ\ps ⊢ K[p := � ∩ � ][q := � ∪ �]

∼

Γ ⊢ K[p := [�; � ]][q := �]
(∪I)

q

Γ ⊢ K[p := [�; � ]][q := � ∪ �]
(∩I)

p

Γ\ps ⊢ K[p := � ∩ � ][q := � ∪ �]

Γ ⊢ K[p := � ∩ � ][q := � ∩ �]
(∩E)

p

Γ ⊢ K[p := �][q := � ∩ �]
(∩E)

q

Γ ⊢ K[p := �][q := �]

∼

Γ ⊢ K[p := � ∩ � ][q := � ∩ �]
(∩E)

q

Γ ⊢ K[p := � ∩ � ][q := �]
(∩E)

p

Γ ⊢ K[p := �][q := �]

Γ ⊢ K[p := � ∩ � ][q := �]
(∩E)

p

Γ ⊢ K[p := �][q := �]
(∪I)

q

Γ ⊢ K[p := �][q := � ∪ �]

∼

Γ ⊢ K[p := � ∩ � ][q := �]
(∪I)

q

Γ ⊢ K[p := � ∩ � ][q := � ∪ �]
(∩E)

p

Γ ⊢ K[p := �][q := � ∪ �]

Γ ⊢ K[p : �][q := �]
(∪I)

p

Γ ⊢ K[p : � ∪ � ][q := �]
(∪I)

q

Γ ⊢ K[p : � ∪ � ][q := � ∪ �]

∼

Γ ⊢ K[p : �][q := �]
(∪I)

q

Γ ⊢ K[p : �][q := � ∪ �]
(∪I)

p

Γ ⊢ K[p : � ∪ � ][q := � ∪ �]

A derivation � :: Γ ⊢ K in IUL

k

formally denotes an equivalene lass of derivations in pIUL

k

, all

proving Γ ⊢ K.

Remark 3.9 (i) Sine the loal rules (P), (D), (∩I), (∩E), and (∪I) are not impressed on the deoration

of a derivation, we an safely say that derivations of pIUL

k

in the same equivalene lass admit the

same deoration provided that ontexts are identially deorated. This deoration is also the one for the

IUL

k

-derivation representing the equivalene lass in question.

(ii) As already remarked for the ase of pIL and IL in Chapter 1, in pratie an equivalene lass

of pIUL

k

-derivations, i.e. an IUL

k

-derivation, is identi�ed with a spei� member of the lass, i.e. a

spei� pIUL

k

-derivation. Thereupon, we an atually ignore De�nition 3.8 and on�ne ourselves to

De�nition 3.4.
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Had we onsidered (∪E) loal, we would have also had to examine the ommutations of the pairs

(P,∪E), (D,∪E), (∩E,∪E), (∪I,∪E), (∩I,∪E), and (∪E,∪E).

The �rst four pairs ommute symmetrially, though not without minor restritions whih stem from

the fat that (∪E) is a two-premise rule. In partiular, for the pair (P,∪E), the only ase that works is

when both premises of (∪E) derive from (P) and this is beause this strutural rule messes up with the

tree-struture. Cases where only one premise of (∪E) derives from (P) do not work. The same holds for

the pair (D,∪E).

Γ ⊢ K[q := � ∪ � ]
(P)

ps

Γ\ps ⊢ (K[q := � ∪ � ])\ps
Γq=

qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(P)

ps

(Γq=
qs

)\ps; (K[q := [�; � ]])\ps ⊢ (L[q := [�; �]])\ps
(∪E)

q

Γ\ps ⊢ (L[q := �])\ps

∼

3.5(ii,2)

Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(∪E)

q

Γ ⊢ L[q := �]
(P)

ps

Γ\ps ⊢ (L[q := �])\ps

Γ ⊢ K[q := � ∪ � ]
(D)

p

′

Γp=
p

′
s

⊢ (K[q := � ∪ � ])p=
p

′
s

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(D)

p

′

(Γq=
qs

)p=
p

′
s

; (K[q := [�; � ]])p=
p

′
s

⊢ (L[q := [�; �]])p=
p

′
s

(∪E)
q

Γp=
p

′
s

⊢ (L[q := �])p=
p

′
s

∼

3.5(ii,3)

Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]]
(∪E)

q

Γ ⊢ L[q := �]
(D)

p

′

Γp=
p

′
s

⊢ (L[q := �])p=
p

′
s

On the other hand, for the pair (∩E,∪E), the only ase that works is when the minor premise of (∪E)

derives from (∩E). The same holds for the pair (∪I,∪E).

Γ ⊢ K[q := � ∪ � ]

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := � ∩ �]
(∩E)

p

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := �]
(∪E)

q

Γ ⊢ L[q := �][p := �]

∼

Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := � ∩ �]
(∪E)

q

Γ ⊢ L[q := �][p := � ∩ �]
(∩E)

p

Γ ⊢ L[q := �][p := �]

Γ ⊢ K[q := � ∪ � ]

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := �]
(∪I)

p

Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := � ∪ �]
(∪E)

q

Γ ⊢ L[q := �][p := � ∪ �]

∼
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Γ ⊢ K[q := � ∪ � ] Γq=
qs

; K[q := [�; � ]] ⊢ L[q := [�; �]][p := �]
(∪E)

q

Γ ⊢ L[q := �][p := �]
(∪I)

p

Γ ⊢ L[q := �][p := � ∪ �]

For the last two pairs the interhange relation is not exatly symmetrial, sine the ases that work

involve additional strutural rules or restritions on ertain leaves. As examples, we show the pair (∩I,∪E)

in the ase where the minor premise of (∪E) derives from (∩I), whih is atually the only ase that works

for this pair, and the pair (∪E,∪E) in the ase where again the minor premise of the lower (∪E) derives

from the upper (∪E). We present the latter pair using a simple kit-struture to avoid heavy formalism.

Γ ⊢ K[q := � ∪ � ][p := �]

(Γq=
qs

)p=
ps

; K[q := [�; � ]][p := [�; �]] ⊢ L[q := [�; �]][p := [�; �]]
(∩I)

p

Γq=
qs

; K[q := [�; � ]][p := �] ⊢ L[q := [�; �]][p := � ∩ �]
(∪E)

q

Γ ⊢ L[q := �][p := � ∩ �]

?

∼

3.5(ii,3)

Γ ⊢ K[q := � ∪ � ][p := �]
(D)

p

Γp=
ps

⊢ K[q := � ∪ � ][p := [�; �]] (Γp=
ps

)q=
qs

; K[q := [�; � ]][p := [�; �]] ⊢ L[q := [�; �]][p := [�; �]]
(∪E)

q

Γp=
ps

⊢ L[q := �][p := [�; �]]
(∩I)

p

Γ ⊢ L[q := �][p := � ∩ �]

Γ ⊢ [�; � ∪ �]

Γr=
rr

; [�; [�; �]] ⊢ [� ∪ �; [φ;φ]] (Γr=
rr

)l=
ll

; [[�; �]; [�; �]]; [[�; � ]; [φ;φ]] ⊢ [[�; �]; [�; �]]
(∪E)

l

Γr=
rr

; [�; [�; �]] ⊢ [�; [�; �]]
(∪E)

r

Γ ⊢ [�; �]

?

∼

3.5(ii,3)

Γ ⊢ [�; � ∪ �] Γr=
rr

; [�; [�; �]] ⊢ [� ∪ �; [φ;φ]]
(∪E)

r

Γ ⊢ [� ∪ �; �]

see right below

� :: Γl=
ll

; [[�; � ]; �] ⊢ [[�; �]; �]
(∪E)

l

Γ ⊢ [�; �]

Γ ⊢ [�; � ∪ �]
(D)

l

Γl=
ll

⊢ [[�; �]; � ∪ �]
(W)

Γl=
ll

; [[�; � ]; �] ⊢ [[�; �]; � ∪ �]

(Γr=
rr

)l=
ll

; [[�; �]; [�; �]]; [[�; � ]; [φ;φ]] ⊢ [[�; �]; [�; �]]
(X)

(Γr=
rr

)l=
ll

; [[�; � ]; [φ;φ]]; [[�; �]; [�; �]] ⊢ [[�; �]; [�; �]]
(∪E)

r

� :: Γl=
ll

; [[�; � ]; �] ⊢ [[�; �]; �]

In the ase of (∪E,∪E), the leaves of subtree [�; �] must be idential, so that (∪E)
r

an be applied, and

even twie, in the derivation to the right of \∼". This means that a restrition is posed on leaves of the

premises of (∪E)
l

in the derivation to the left of \∼", sine, in its general ase, this rule would be applied

with di�erent suh leaves.

The above disussion highlights the peuliar nature of (∪E), when ompared to the (other) loal rules

(P), (D), (∩I), (∩E), (∪I). Besides the fat that union elimination is a two-premise rule, while all the

others are one-premise rules, there are signi�ant abnormalities in ommuting union elimination with the

others, while the others ommute with eah other quite smoothly. The formalism of moleules will later

reveal a ertain kind of globality inherent in the union elimination rule whih is as yet onealed by the

omplex notation of kits. So, fortunately, union elimination will prove to di�er from the rules ategorized

as \loal", retaining the validity of De�nition 3.8.
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3.1.2 Relating IUL

k

to MLns

Using the non-standard deorations of ML and IUL

k

, we will attain a onnetion between a single

IUL

k

derivation and a �nite set of MLns derivations modulo the onversion of intersetion and union to

onjuntion and disjuntion, respetively. We will show that any derivation � in IUL

k

provides a �nite

number of derivations in MLns whih all share the deoration of �. The next theorem is an extension of

Theorem 1.12.

Theorem 3.10 (From IUL

k

to MLns) Let � :: H1; : : : ; Hm

⊢ K be a derivation in IUL

k

, suh that

�

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K. For every terminal path p in P

T

(K), there exists a derivation

�

p :: (H1)
p

; : : : ; (H
m

)p ⊢ Kp

in MLns, suh that (�p)? :: x1 : (H1)
p

; : : : ; x

m

: (H
m

)p ⊢ t : Kp

.

Proof. By indution on �

?

.

Base: If �

? :: x : K ⊢ x : K is an IUL

?

k

-axiom and p ∈ P

T

(K), there is an axiom �

p :: Kp ⊢ K

p

in

MLns, suh that (�p)? :: x : Kp ⊢ x : Kp

.

Indution step: We show the most interesting ases.

.

�

?

0 :: x
j

: H
j

[p := [�
j

; �

j

]] ⊢ t : K[p := [�; � ]]
(∩I)

�

? :: x
j

: H
j

[p : �
j

] ⊢ t : K[p := � ∩ � ]

Let q ∈ P

T

(K[p := [� ∩ � ]). We distinguish two subases.

1. If q 6= p, then q ∈ P

T

(K[p := [�; � ]]). So, by the IH, there is a

�

q

0 :: (H
j

[p := [�
j

; �

j

]])q ⊢ (K[p := [�; � ]])q

in MLns, suh that (�q0)
? :: x

j

: (H
j

[p := [�
j

; �

j

]])q ⊢ t : (K[p := [�; � ]])q . Sine (H
j

[p := [�
j

; �

j

]])q =
(H

j

[p := �

j

])q and (K[p := [�; � ]])q = (K[p := � ∩ � ])q , it is �q0 = �

q

.

2. If q = p, then pl; pr ∈ P

T

(K[p := [�; � ]]). So, by the IH, there exist �

pl

0 :: �
j

⊢ � and �

pr

0 :: �
j

⊢ �

in MLns, suh that (�pl0 )? :: x
j

: �
j

⊢ t : � and (�pr0 )? :: x
j

: �
j

⊢ t : � . Applying (∧I) to �
pl

0 ; �
pr

0 , we

get a �

p :: �
j

⊢ � ∧ � whih is in MLns, sine both �

pl

0 and �

pr

0 are in MLns and they are isomorphi.

Moreover, it is (�p)? :: x
j

: �
j

⊢ t : � ∧ � .

.

�

?

0 :: x
j

: H
j

[p := �

j

] ⊢ t : K[p := � ∪ � ] �

?

1 :: x
j

: H
j

[p := [�
j

; �

j

]]; x : K[p := [�; � ]] ⊢ u : L[p := [�; �]]
(∪E)

�

? :: x
j

: H
j

[p := �

j

] ⊢ u[t=x] : L[p := �]

Let q ∈ P

T

(L[p := �]), then q ∈ P

T

(K[p := � ∪ � ]). We distinguish two subases.

1. If q 6= p, then q ∈ P

T

(L[p := [�; �]]). We have that (H
j

[p := [�
j

; �

j

]])q = (H
j

[p := �

j

])q = �

j

,

(K[p := [�; � ]])q = (K[p := � ∪ � ])q = �, and (L[p := [�; �]])q = (L[p := �])q = �. By the IH, there exist

�

q

0 :: �
j

⊢ � and �q1 :: �
j

; � ⊢ � in MLns, suh that (�q0)
? :: x

j

: �
j

⊢ t : � and (�q1)
? :: x

j

: �
j

; x : � ⊢ u : �.
It is �

q = S(�q0 ; �
q

1) :: �j ⊢ �, where S(�
q

0 ; �
q

1) stands for the derivation obtained from �

q

1 by substituting

spei� instanes of axioms � ⊢ � by �

q

0 and then possibly eliminating some strutural rules. The (non-

standard) deoration of the substitution derivation �

q

gives (�q)? :: x
j

: �
j

⊢ u[t=x] : �.

2. If q = p, then pl; pr ∈ P

T

(L[p := [�; �]]). So, by the IH, there exist �

p

0 :: �
j

⊢ � ∨ � , �pl1 :: �
j

; � ⊢ �,

and �

pr

1 :: �
j

; � ⊢ � in MLns, suh that (�p0)
? :: x

j

: �
j

⊢ t : � ∨ � , (�pl1 )? :: x
j

: �
j

; x : � ⊢ u : �, and

(�pr1 )? :: x
j

: �
j

; x : � ⊢ u : �. Applying (∨E) to �p0 ; �
pl

1 ; �
pr

1 , we get a �

p :: �
j

⊢ � whih is in MLns, sine

eah of �

p

0 ; �
pl

1 ; �
pr

1 is in MLns and �

pl

1 ; �
pr

1 are isomorphi. Moreover, it is (�p)? :: x
j

: �
j

⊢ u[t=x] : �. ⊣
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De�nition 3.11 Let � :: Γ ⊢ K be a derivation in IUL

k

and ML(�) = {�p | p ∈ P

T

(K)}. A derivation

�

p

in ML(�) will be alled a projetion of � in ML.

Example 3.12 Let � = � ∩ �, � =  ∩ Æ, and � = (Æ → �) ∩ (� → �). If Γ0 = [�; � ]; [� → �; �] and
Γ1 = [�; [�; � ]]; [� → �; [�; �]]; [�; [Æ; �]], onsider the following derivation � in IUL

k

.

[�; � ] ⊢ [�; � ]
(W)

Γ0 ⊢ [�; � ]
(∩E)

Γ0 ⊢ [�; Æ]
(∪I)

Γ0 ⊢ [�; Æ ∪ �]

[�→ �; [�; �]] ⊢ [�→ �; [�; �]]
(WX)

Γ1 ⊢ [�→ �; [�; �]]
(∩E)

Γ1 ⊢ [�→ �; [Æ → �; � → �]]

[�; [Æ; �]] ⊢ [�; [Æ; �]]
(WX)

Γ1 ⊢ [�; [Æ; �]]
(→E)

Γ1 ⊢ [�; [�; �]]
(∪E)

r

Γ0 ⊢ [�; �]
(→I)

� :: [�; � ] ⊢ [(�→ �)→ �; �→ �]

There are two projetions �

l

and �

r

of � in ML. Abstrating the left paths in �, we arrive at a

substitution operation whih is arried out to give �

l

.

� ⊢ �
(W)

�; �→ � ⊢ �
(∧E)

�

l

0 :: �; �→ � ⊢ �

�→ � ⊢ �→ �

(WX)

�; �→ � ⊢ �→ �

(W)

�; �→ �; � ⊢ �→ �

� ⊢ �
(WX)

�; �→ �; � ⊢ �
(→E)

�

l

1 :: �; �→ �; � ⊢ �
[substitution℄

S(�l0; �
l

1) :: �; �→ � ⊢ �

�→ � ⊢ �→ �

(WX)

�; �→ � ⊢ �→ � �

l

0 :: �; �→ � ⊢ �
(→E)

S(�l0; �
l

1) :: �; �→ � ⊢ �
(→I)

�

l :: � ⊢ (�→ �)→ �

Abstrating the right paths in �, or, more preisely, the terminal paths whose string starts with r, we

arrive at a (∨E) inferene in �

r

.

� ⊢ �
(W)

�; � ⊢ �
(∧E)

�; � ⊢ Æ
(∨I)

�; � ⊢ Æ ∨ �

� ⊢ �
(WX)

�; �; Æ ⊢ �
(∧E)

�; �; Æ ⊢ Æ → �

Æ ⊢ Æ
(WX)

�; �; Æ ⊢ Æ
(→E)

�; �; Æ ⊢ �

� ⊢ �
(WX)

�; �; � ⊢ �
(∧E)

�; �; � ⊢ � → �

� ⊢ �
(WX)

�; �; � ⊢ �
(→E)

�; �; � ⊢ �
(∨E)

�; � ⊢ �
(→I)

�

r :: � ⊢ �→ �

So, the (∪E) inferene at path r in � is translated to a (∨E) inferene in �

r

.

Given that ontexts are deorated by x, derivations �; �

l

, and �

r

are all (non-standardly) deorated

by �y:yx.

It is worth noting that the onlusive judgement [�; � ] ⊢ [(� → �) → �; � → �] of �, whih is in the

language of IL, i.e. it does not involve union, is already provable in IL.
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[�→ �; �] ⊢ [�→ �; �]
(WX)

[�; � ]; [�→ �; �] ⊢ [�→ �; �]
(∩E)

[�; � ]; [�→ �; �] ⊢ [�→ �; Æ → �]

[�; � ] ⊢ [�; � ]
(W)

[�; � ]; [�→ �; �] ⊢ [�; � ]
(∩E)

[�; � ]; [�→ �; �] ⊢ [�; Æ]
(→E)

[�; � ]; [�→ �; �] ⊢ [�; �]
(→I)

�

′ :: [�; � ] ⊢ [(�→ �)→ �; �→ �]

This is an instane of the fat that IUL

k

is a onservative extension of IL. Finally, derivation �

′
is also

(non-standardly) deorated by �y:yx, if the ontext is deorated by x.

From MLns to IUL

k

?

The aim of this paragraph is to spotlight the problems evolving in the attempt to prove the inverse of

Theorem 3.10. We will study the simple ase where we start o� with a single derivation in MLns and try

to attain its orresponding derivation in IUL

k

.

If � :: �1; : : : ; �m ⊢ � is in MLns with a non-standard deoration �

? :: x1 : �1; : : : ; xm : �
m

⊢ t : �,
we would like to show that there exists a derivation �

′ :: �1; : : : ; �m ⊢ � in IUL

k

, where �1; : : : ; �m; � are

single-node kits modulo the onversion of onnetives, suh that (�′)? :: x1 : �1; : : : ; xm : �
m

⊢ t : �.
Supposing we proeed by indution on �, let us onsider the ase of (∧I).

�

?

0 :: x1 : �1; : : : ; xm : �
m

⊢ t : � �

?

1 :: x1 : �1; : : : ; xm : �
m

⊢ t : �
(∧I)

�

? :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∧ �

By the IH, we would get derivations �

′
0 :: �1; : : : ; �m ⊢ � and �

′
1 :: �1; : : : ; �m ⊢ � in IUL

k

, suh that

(�′
0)
? :: x1 : �1; : : : ; xm : �

m

⊢ t : � and (�′
1)
? :: x1 : �1; : : : ; xm : �

m

⊢ t : � . So, we would have two

identially deorated derivations in IUL

k

. We would like to be able to join together these two derivations

with the same deoration, so as to get a single derivation with this very deoration. That is to say, we

would like to be able to merge �

′
0 and �

′
1 into a single �

′
01 :: [�1; �1]; : : : ; [�m; �m] ⊢ [�; � ], suh that

(�′
01)

? :: x1 : [�1; �1]; : : : ; xm : [�
m

; �

m

] ⊢ t : [�; � ]. Then, by (∩I) on �

′
01, we would get the required

�

′ :: �1; : : : ; �m ⊢ � ∩ � with (�′)? :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∩ � .
The ruial step is the uni�ation of two identially deorated derivations of IUL

k

into a single

derivation of IUL

k

with this very deoration. Formally, we would like to prove the following laim.

Claim: Two identially deorated IUL

k

-derivations �

?

0 :: x1 : H1; : : : ; xm : H
m

⊢ t : H and

�

?

1 :: x1 : K1; : : : ; xm : K
m

⊢ t : K an be joined together into a single IUL

k

-derivation

�

? :: x1 : [H1;K1]; : : : ; xm : [H
m

;K

m

] ⊢ t : [H;K] with this very deoration.

However, as the next example demonstrates, the substitution term in the deoration of (∪E) poses a

serious problem to this uni�ation task.

Example 3.13 Let � = (�∪ �)∩�; � = �∩�2; � = �1 ∩�, and � = (� ∪ �)∩�. Consider the identially
deorated IUL

k

-derivations �0 and �1, shown below.
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x : � ⊢ x : �
(W)

x : �; y :  ⊢ x : �
(∩E1)

x : �; y :  ⊢ x : � ∪ �

z : [�; � ] ⊢ z : [�; � ]
(WX)

x : [�; �]; y : [ ;  ]; z : [�; � ] ⊢ z : [�; � ]
(∩E)

x : [�; �]; y : [ ;  ]; z : [�; � ] ⊢ z : [�; �]
(∪E)

�

?

0 :: x : �; y :  ⊢ z[x=z] = x : �

x : � ⊢ x : �
(W)

x : �; y : � ⊢ x : �
(∩E1)

x : �; y : � ⊢ x : � ∪ �

x : [�; �] ⊢ x : [�; �]
(W)

x : [�; �]; y : [�; �]; z : [�; �] ⊢ x : [�; �]
(∩E)

x : [�; �]; y : [�; �]; z : [�; �] ⊢ x : [�; �]
(∪E)

�

?

1 :: x : �; y : � ⊢ x[x=z] = x : �

An attempt to onstrut a derivation �

? :: x : [�; �]; y : [ ; �] ⊢ x : [�; �] in a bottom-up manner fails,

as shown below.

[�; �]x ⊢ x : [�; �]
(W)

([�; �]; [ ; �])x;y ⊢ x : [�; �]
(∩E)

([�; �]; [ ; �])x;y ⊢ x : [� ∪ �; � ∪ �]

axiom?

(strut.)

([[�; �]; [�; �]]; [[ ;  ]; [�; �]]; [[�; � ]; [�; �]])x;y;z ⊢ ? : [[�; � ]; [�; �]]
(∩E)

([[�; �]; [�; �]]; [[ ;  ]; [�; �]]; [[�; � ]; [�; �]])x;y;z ⊢ ? : [[�; �]; [�; �]]
(∪E)†

�

? :: x : [�; �]; y : [ ; �] ⊢ ? : [�; �]

For suh an attempt to work, we would, at �rst, need to have a notion of union elimination allowing

to apply the rule to di�erent paths in parallel. In this example, the variant rule (∪E)† applies union

elimination to paths l and r simultaneously. However, even with (∪E)†, we annot reah an axiom of

IUL

k

in the right branh. This is beause the judgement obtained after having applied the intersetion

eliminations does not ontain the suedent-kit in the ontext, i.e. the kit [[�; � ]; [�; �]] is not in the

ontext [[�; �]; [�; �]]; [[ ;  ]; [�; �]]; [[�; � ]; [�; �]]. So, any further attempt to apply strutural rules to reah

an axiom fails. This problem derives from the fat that, in the right branh of �0, the kit-sequene

[�; �]; [ ;  ]; [�; � ] entails the kit [�; � ], whih is the third member of the sequene, while, in the right

branh of �1, the kit-sequene [�; �]; [�; �]; [�; �] entails the kit [�; �], whih is the �rst member of the

sequene. Termwise, given that the ontexts in the right premises of (∪E) in �0 and �1 are deorated by

the same sequene of variables x; y; z, the kit-situation just desribed reets on di�erent terms z and x

deorating the suedent-kits in these premises in �0 and �1, respetively. Sine z (trivially) ontains a free

ourrene of z, while x doesn't, this translates to two di�erent kinds of substitution in the deorations

of �0 and �1: a proper substitution z[x=z] in �0 and a phony substitution x[x=z] in �1. Hene, the

inompatibility of �

?

0 and �

?

1 essentially redues to these two di�erent ways of expressing a term, namely

x, as a substitution.

The problem of the twofold deomposition of substitution, depited in the above example for the ase

of the logi IUL

k

, is a problem already spotted in the literature for the ase of union types (see [2, 22℄).

3.2 Intersetion and Union Logi IUL

m

We de�ne Intersetion and Union Logi IUL

m

as an extension with union of Intersetion Synhronous

Logi ISL. This system is also intended as a logial foundation for IUT, i.e. as a logi orresponding
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(ax)

[(�
i

; �
i

)
i

]

[(Γ
i

; �
i

)
i

]
(W)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

M∪N
(P)

M

M∪ [A]
(D)

M∪ [A;A]

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

M∪ [(Γ ; �); (Γ ; � )]
(∩I)

M∪ [(Γ ; � ∩ � )]

M∪ [(Γ ; � ∩ � )]
(∩E1)

M∪ [(Γ ; �)]

M∪ [(Γ ; � ∩ � )]
(∩E2)

M∪ [(Γ ; � )]

M∪ [(Γ ; �)]
(∪I1)

M∪ [(Γ ; � ∪ � )]

M∪ [(Γ ; � )]
(∪I2)

M∪ [(Γ ; � ∪ � )]

[(Γ
i

; �
i

)
i

] ∪ [(Γ ; � ∪ � )] [(Γ
i

; �

i

;  
i

)
i

] ∪ [(Γ; � ; �); (Γ; � ; �)]
(∪E)

[(Γ
i

;  
i

)
i

] ∪ [(Γ ; �)]

Figure 3.7: The logi IUL

m

.

to IUT through a non-standard deoration of its derivations. Sine IUT has been shown to orrespond

to MLns through deoration and erasure, we may restrit our study to the relation between IUL

m

and

MLns, as was done in the ase of IUL

k

.

Presuming the notions of atom and moleule as given in 1.16, we an de�ne IUL

m

as follows.

De�nition 3.14 (IUL

m

) (i) Formulas are generated by the grammar � ::= � | � → � | � ∩ � | � ∪ �,
where � belongs to a ountable set of atomi formulas.

(ii) The logi IUL

m

derives moleules [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] = [(Γ
i

; �
i

)
i

] by the rules displayed

in Figure 3.7.

A rule in IUL

m

an be derived from the orresponding rule in IUL

k

by using the following method

for transforming a judgement in IUL

k

to a moleule in IUL

m

. If H1; : : : ; Hm

⊢ K is a judgement in IUL

k

and there are n terminal paths p1; : : : ; pn in H1; : : : ; Hm

;K, then the orresponding moleule in IUL

m

is

[(Hp1

1 ; : : : ; H

p1
m

; Kp1); : : : ; (Hp

n

1 ; : : : ; H

p

n

m

; Kp

n)]. In partiular, eah terminal path in the kits produes
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an atom in the moleule. This is illustrated by the following example of orresponding union elimination

instanes in the two logis.

IUL

k

:

[�; �1]; [�; �2] ⊢ [; � ∪ � ] [�; [�1; �1]]; [�; [�2; �2]]; [; [�; � ]] ⊢ [Æ; [�; �]]
(∪E)

r

[�; �1]; [�; �2] ⊢ [Æ; �]

IUL

m

:

[(�; � ; ); (�1; �2 ; � ∪ � )] [(�; �;  ; Æ); (�1; �2; � ; �); (�1; �2; � ; �)]
(∪E)

[(�; � ; Æ); (�1; �2 ; �)]

Using the notation \ [p := ]" of kits, though, the above IUL
k

-instane is written as follows.

H1[r := �1]; H2[r := �2] ⊢ K[r := � ∪ � ] H1[r := [�1; �1]]; H2[r := [�2; �2]]; K[r := [�; � ]] ⊢ L[r := [�; �]]
(∪E)

r

H1[r := �1]; H2[r := �2] ⊢ L[r := �]

This kit-notation fouses on the path where union elimination is performed, whih is path r in the spei�

example. So, the substitution operation (ut) that takes plae at path l is ignored. On the other hand,

this substitution is expliitly shown in the notation of moleules where eah terminal path is \represented"

by an atom. It is now more than obvious that union elimination annot be onsidered loal, at least not

in the sense that loal rules leave ertain atoms ompletely unhanged.

As pointed out for (∪E) in IUL

k

, (∪E) in IUL

m

also aims to join together the isomorphi minor

premises of (∨E) in MLns. This is ahieved by plaing them both in the same moleule, so that (∪E)

has a single minor premise and a non-standard deoration in IUL

m

always terminates.

: : : ⊢ t : � ∨ � : : : ; x : � ⊢ u : � : : : ; x : � ⊢ u : �
(∨E)

: : : ⊢ u[t=x] : �

t : [ : : : ; (: : : ; � ∪ � )] u : [ : : : ; (: : : ; x : � ; �); (: : : ; x : � ; �)]
(∪E)

u[t=x] : [ : : : ; (: : : ; �)]

The non-standard deoration of IUL

m

is ditated by the very rules of IUT, as was the ase with the

non-standard deoration of ML, and atually extends the non-standard deoration of ISL (see 1.17) to

doubling and the union rules. It will be used in the theorems proving the equivalene of IUL

k

and IUL

m

(Theorems 3.18 and 3.21) and also in the theorem relating IUL

m

to MLns (Theorem 3.22).

De�nition 3.15 (Non-standard deoration of IUL

m

) Let � :: M = [(Γ
i

; �
i

)
i

] = [(�i1; : : : ; �
i

m

; �
i

)
i

]
be a derivation in IUL

m

. By deorating ontexts bottom-up with distint variables, starting with the

sequene p = x1; : : : ; xm, and then deorating moleules top-down with terms in Λ, we get a deorated

derivation �

? :: t : M
p

= [(Γ
i

; �
i

)
i

]
p

= [(x1 : �i1; : : : ; xm : �i
m

; �
i

)
i

]. The deoration rules are presented

in Figure 3.8. When deorating ontexts bottom-up, the new variable in an (→I) premise or in a (∪E)

minor premise is fresh with respet to the variables in the branh onneting the onlusion to the root.
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(ax)

x : [(�
i

; �
i

)
i

]
x

t : [(Γ
i

; �
i

)
i

]
p

(W)

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t :M
p

∪N
p

(P)

t :M
p

t :M
p

∪ [A]
p

(D)

t :M
p

∪ [A;A]
p

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t :M
p

∪ [(Γ ; �); (Γ ; � )]
p

(∩I)
t :M

p

∪ [(Γ ; � ∩ � )]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E1)

t :M
p

∪ [(Γ ; �)]
p

t :M
p

∪ [(Γ ; � ∩ � )]
p

(∩E2)

t :M
p

∪ [(Γ ; � )]
p

t :M
p

∪ [(Γ ; �)]
p

(∪I1)
t :M

p

∪ [(Γ ; � ∪ � )]
p

t :M
p

∪ [(Γ ; � )]
p

(∪I2)
t :M

p

∪ [(Γ ; � ∪ � )]
p

t : [(Γ
i

; �
i

)
i

]
p

∪ [(Γ ; � ∪ � )]
p

u : [(Γ
i

; �

i

;  
i

)
i

]
p; x

∪ [(Γ; � ; �); (Γ; � ; �)]
p; x

(∪E)
u[t=x] : [(Γ

i

;  
i

)
i

]
p

∪ [(Γ ; �)]
p

Figure 3.8: Non-standard deoration of IUL

m

.

Remark 3.16 Obviously, if �

? :: t : M
p

, then FV (t) ⊆ {p}.

As was the ase with IUL

k

, every derivation in IUL

m

admits a deoration, sine (∩I) has a single

premise and (∪E) has a single minor premise.

Remark 3.17 The logi IUL

m

is formally de�ned as a quotient set of equivalene lasses of derivations,

in the manner of the formal de�nition of IUL

k

(see 3.8). The equivalene relation is between derivations

that disagree only in the order of onseutive loal rules onerning di�erent atoms. The ommutations of

the loal rules (P), (D), (∩I), (∩E), (∪I) follow the pattern in 3.8, only in the moleule setup. Derivations

in the same equivalene lass admit the same (non-standard) deoration.

3.2.1 Equivalene of IUL

k

and IUL

m

The logis IUL

k

and IUL

m

are equivalent. This is a desired result, sine they were both designed to do

the same job, namely to express MLns as an independent logi. We show a transformation of a deorated
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IUL

k

-derivation into an identially deorated IUL

m

-derivation and onversely. In fat, the following

theorem formalizes the method already desribed for onverting a kit-judgement to a moleule.

Theorem 3.18 Let �

? :: x1 : H1; : : : ; xm : H
m

⊢ t : K be in IUL

?

k

and P

T

(K) = {p1; : : : ; pn}. Then,

there exists a (�′)? :: t : [(Hp1

1 ; : : : ; H

p1
m

; Kp1); : : : ; (Hp

n

1 ; : : : ; H

p

n

m

; Kp

n)]
x1;:::; xm in IUL

?

m

.

Proof. By indution on �

?

.

Base: If �

? :: x : K ⊢ x : K is an IUL

?

k

-axiom, then (�′)? :: x : [(Kp1 ; Kp1); : : : ; (Kp

n ; Kp

n)]
x

is an

IUL

?

m

-axiom.

Indution step: We show three harateristi ases.

.

�

?

0 :: x1 : H1; : : : ; xm : H
m

⊢ t : K
(P)

�

? :: x1 : H1\
pl

; : : : ; x

m

: H
m

\pl ⊢ t : K\pl

If

2

P

T

(K) = {q1; : : : ; q� ; plt1; : : : ; plt�; pru1; : : : ; pru�}, then P

T

(K\pl) = {q1; : : : ; q� ; pt1; : : : ; pt�}.
The following equalities hold.

1. (H
j

)qi = (H
j

\pl)qi and Kq

i = (K\pl)qi , for i ∈ {1; : : : ; �}

2. (H
j

)plti = (H
j

\pl)pti and Kplt

i = (K\pl)pti , for i ∈ {1; : : : ; �}

By the IH, there exists a (�′
0)
? :: t : (M∪N )

x1;:::; xm in IUL

m

, where

M = [(Hq1

1 ; : : : ; H
q1
m

; Kq1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; Kq

� );

(Hplt1

1 ; : : : ; H

plt1
m

; Kplt1); : : : ; (H
plt

�

1 ; : : : ; H

plt

�

m

; Kplt

�)]

N = [(Hpru1

1 ; : : : ; H

pru1
m

; Kpru1); : : : ; (Hpru

�

1 ; : : : ; H

pru

�

m

; Kpru

�)]

Applying (P) to (�′
0)
?

, we get a (�′)? :: t : M
x1;:::; xm , where 1 and 2 give

M = [((H1\pl)q1 ; : : : ; (Hm

\pl)q1 ; (K\pl)q1 ); : : : ; ((H1\pl)q� ; : : : ; (Hm

\pl)q� ; (K\pl)q� );

((H1\
pl)pt1 ; : : : ; (H

m

\pl)pt1 ; (K\pl)pt1); : : : ; ((H1\
pl)pt� ; : : : ; (H

m

\pl)pt� ; (K\pl)pt�)]

.

�

?

0 :: x1 : H1; : : : ; xm : H
m

⊢ t : K
(D)

�

? :: x1 : H1
q

=

pl

; : : : ; x

m

: H
m

q

=

pl

⊢ t : Kq

=

pl

We onsider two subases.

i) p 6= q: If P

T

(K) = {q; q1; : : : ; q� ; pt1; : : : ; pt�}, then PT (K
q

=

pl

) = {q; q1; : : : ; q� ; pl; prt1; : : : ; prt�}.
The following equalities hold.

1. (H
j

)qi = (H
j

q

=

pl

)qi and Kq

i = (Kq

=

pl

)qi , for i ∈ {1; : : : ; �}

2. (H
j

)pti = (H
j

q

=

pl

)prti and Kpt

i = (Kq

=

pl

)prti , for i ∈ {1; : : : ; �}

3. (H
j

)q = (H
j

q

=

pl

)q = (H
j

q

=

pl

)pl and Kq = (Kq

=

pl

)q = (Kq

=

pl

)pl

2

In this proof, we exeptionally use the letters t and u to denote paths, so as to avoid heavy notation aused by extra

insignia on p or q.
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By the IH, there exists a (�′
0)
? :: t : (M∪ [A])

x1;:::; xm in IUL

m

, where

M = [(Hq1

1 ; : : : ; H
q1
m

; Kq1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; Kq

� );

(Hpt1

1 ; : : : ; H

pt1
m

; Kpt1); : : : ; (H
pt

�

1 ; : : : ; H

pt

�

m

; Kpt

�)]

A = (Hq

1 ; : : : ; H
q

m

; Kq)

Applying (D) to (�′
0)
?

, we get a (�′)? :: t : (M∪ [A;A])
x1;:::; xm , where 1-3 give

M = [((H1
q

=

pl

)q1 ; : : : ; (H
m

q

=

pl

)q1 ; (Kq

=

pl

)q1); : : : ; ((H1
q

=

pl

)q� ; : : : ; (H
m

q

=

pl

)q� ; (Kq

=

pl

)q� );

((H1
q

=

pl

)prt1 ; : : : ; (H
m

q

=

pl

)prt1 ; (Kq

=

pl

)prt1); : : : ; ((H1
q

=

pl

)prt� ; : : : ; (H
m

q

=

pl

)prt� ; (Kq

=

pl

)prt�)]

A;A = ((H1
q

=

pl

)q; : : : ; (H
m

q

=

pl

)q ; (Kq

=

pl

)q); ((H1
q

=

pl

)pl; : : : ; (H
m

q

=

pl

)pl ; (Kq

=

pl

)pl)

ii) p ⊆ q: Without loss of generality, we may assume that P

T

(K) = {q1; : : : ; q� ; q = pt1; : : : ; pt�}.
Then, we have that P

T

(Kq

=

pl

) = {q1; : : : ; q� ; pl; prt1; : : : ; prt�} and get the following equalities.

1. (H
j

)qi = (H
j

q

=

pl

)qi and Kq

i = (Kq

=

pl

)qi , for i ∈ {1; : : : ; �}

2. (H
j

)pti = (H
j

q

=

pl

)prti and Kpt

i = (Kq

=

pl

)prti , for i ∈ {2; : : : ; �}

3. (H
j

)pt1 = (H
j

q

=

pl

)prt1 = (H
j

q

=

pl

)pl and Kpt1 = (Kq

=

pl

)prt1 = (Kq

=

pl

)pl

By the IH, there exists a (�′
0)
? :: t : (M∪ [A])

x1;:::; xm in IUL

m

, where

M = [(Hq1

1 ; : : : ; H
q1
m

; Kq1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; Kq

� );

(Hpt2

1 ; : : : ; H

pt2
m

; Kpt2); : : : ; (H
pt

�

1 ; : : : ; H

pt

�

m

; Kpt

�)]

A = (Hpt1

1 ; : : : ; H

pt1
m

; Kpt1)

Applying (D) to (�′
0)
?

, we get a (�′)? :: t : (M∪ [A;A])
x1;:::; xm , where 1-3 give

M = [((H1
q

=

pl

)q1 ; : : : ; (H
m

q

=

pl

)q1 ; (Kq

=

pl

)q1); : : : ; ((H1
q

=

pl

)q� ; : : : ; (H
m

q

=

pl

)q� ; (Kq

=

pl

)q� );

((H1
q

=

pl

)prt2 ; : : : ; (H
m

q

=

pl

)prt2 ; (Kq

=

pl

)prt2); : : : ; ((H1
q

=

pl

)prt� ; : : : ; (H
m

q

=

pl

)prt� ; (Kq

=

pl

)prt�)]

A;A = ((H1
q

=

pl

)prt1 ; : : : ; (H
m

q

=

pl

)prt1 ; (Kq

=

pl

)prt1); ((H1
q

=

pl

)pl; : : : ; (H
m

q

=

pl

)pl ; (Kq

=

pl

)pl)

.

�

?

0 :: x
j

: H
j

⊢ t : K[p := � ∪ � ] �

?

1 :: x
j

: H
j

p

=

pl

; x : K[p := [�; � ]] ⊢ u : L[p := [�; �]]
(∪E)

�

? :: x
j

: H
j

⊢ u[t=x] : L[p := �]

If P

T

(K[p := � ∪ � ]) = P

T

(L[p := �]) = {q1; : : : ; q� ; p}, then PT (L[p := [�; �]]) = {q1; : : : ; q� ; pl; pr}.
The following equalities hold.

1. (H
j

)qi = (H
j

p

=

pl

)qi , (K[p := � ∪ � ])qi = (K[p := [�; � ]])qi ,

and (L[p := �])qi = (L[p := [�; �]])qi , for i ∈ {1; : : : ; �}

2. H

p

j

= (H
j

p

=

pl

)pl = (H
j

p

=

pl

)pr
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By the IH, there is a (�′
0)
? :: t : (M∪ [(Hp

1 ; : : : ; H
p

m

; � ∪ �)])
x1;:::; xm , where

M = [(Hq1

1 ; : : : ; H
q1
m

; K[p := � ∪ � ]q1 ); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; K[p := � ∪ � ]q� )]

and also, using 2, a (�′
1)
? :: u : (N ∪ [(Hp

1 ; : : : ; H
p

m

; � ; �); (Hp

1 ; : : : ; H
p

m

; � ; �)])
x1;:::; xm; x, where

N = [((H1
p

=

pl

)q1 ; : : : ; (H
m

p

=

pl

)q1 ; (K[p := [�; � ]])q1 ; (L[p := [�; �]])q1 ); : : : ;

((H1
p

=

pl

)q� ; : : : ; (H
m

p

=

pl

)q� ; (K[p := [�; � ]])q� ; (L[p := [�; �]])q� )]
1
= [(Hq1

1 ; : : : ; H
q1
m

;K[p := � ∪ � ]q1 ; L[p := �]q1); : : : ;

(Hq

�

1 ; : : : ; H

q

�

m

;K[p := � ∪ � ]q� ; L[p := �]q� )]

Applying (∪E) to (�′
0)
?

and (�′
1)
?

, we get a (�′)? :: u[t=x] : (M′ ∪ [(Hp

1 ; : : : ; H
p

m

; �)])
x1;:::; xm , where

M′ = [(Hq1

1 ; : : : ; H
q1
m

; L[p := �]q1); : : : ; (Hq

�

1 ; : : : ; H

q

�

m

; L[p := �]q� )] ⊣

To transform a deorated IUL

m

-derivation to an identially deorated IUL

k

-derivation, we need the

following proposition.

Proposition 3.19 Let M = [(�1
1 ; : : : ; �

1
m

; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �
n

)] be a moleule of n > 1 atoms of

ontext-ardinality m > 0. Then, there exists a sequene H1; : : : ; Hm

;K of m + 1 overlapping kits with

n terminal paths p1; : : : ; pn, suh that H

p

i

j

= �

i

j

and K

p

i = �

i

(1 6 i 6 n; 1 6 j 6 m).

Proof. By indution on n. The index j runs from 1 to m.

Base: If M = [(�1; : : : ; �m ; �)], then the m+1 overlapping kits are the single-node kits �1; : : : ; �m; �
with one terminal path, namely the empty path �. It is �

�

j

= �

j

and �

� = � .

Indution step: Let M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n]∪ [(�n+1
1 ; : : : ; �

n+1
m

; �
n+1)]. By the IH, there is

a sequene H1; : : : ; Hm

;K of m+1 overlapping kits with n terminal paths p1; : : : ; pn, suh that H

p

i

j

= �

i

j

and K

p

i = �

i

. In addition, there is a sequene �

n+1
1 ; : : : �

n+1
m

; �

n+1 of m+1 single-node kits. We onsider

the sequene [H1; �
n+1
1 ]; : : : ; [H

m

; �

n+1
m

]; [K; �
n+1] of m + 1 overlapping kits with n + 1 terminal paths

q1= lp1; : : : ; qn= lp

n

; q

n+1= r. For 1 6 i 6 n, it is [H
j

; �

n+1
j

]qi = H

p

i

j

= �

i

j

and [K; �
n+1]

q

i = K

p

i = �

i

.

Also, it is [H
j

; �

n+1
j

]qn+1 = �

n+1
j

and [K; �
n+1]

q

n+1 = �

n+1. ⊣

De�nition 3.20 The sequene H1; : : : ; Hm

;K of overlapping kits in Proposition 3.19 will be alled a

kit-representation of M.

It is obvious that a kit-representation of a moleule M is not unique; di�erent kit-representations of

M may have di�erent tree strutures or the same tree struture, but di�erent leaves in orresponding

kits.

Theorem 3.21 Let �

? :: t : (M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n])
x1;:::; xm be in IUL

?

m

. Then, for every

kit-representation H1; : : : ; Hm

;K of M, there is a (�′)? :: x1 : H1; : : : ; xm : H
m

⊢ t : K in IUL

?

k

.
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Proof. By indution on �

?

.

Base: If �

? :: x : (M = [(�
i

; �
i

) | 1 6 i 6 n])
x

is an IUL

?

m

-axiom and H;K is a kit-representation of

M, then the kits H;K have n terminal paths p1; : : : ; pn and, for 1 6 i 6 n, it is H

p

i = �

i

and K

p

i = �

i

.

Therefore, it is H = K and there is an IUL

?

k

-axiom (�′)? :: x : K ⊢ x : K.

Indution step: We display the most interesting ases, letting j run from 1 to m.

.

�

?

0 :: t : (M∪N )
x1;:::; xm

(P)

�

? :: t :M
x1;:::; xm

where M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] and N = [(�i1; : : : ; �
i

m

; �
i

) | n+ 1 6 i 6 n+ k].

If H1; : : : ; Hm

;K is a kit-representation of M and H

′
1; : : : ; H

′
m

;K

′
is a kit-representation of N , then

[H1; H
′
1]; : : : ; [Hm

; H

′
m

]; [K;K ′] is a kit-representation of M∪N . [Justi�ation: The kits H1; : : : ; Hm

;K

have n terminal paths p1; : : : ; pn and, for 1 6 i 6 n, it is H

p

i

j

= �

i

j

andK

p

i = �

i

. The kits H

′
1; : : : ; H

′
m

;K

′

have k terminal paths p

n+1; : : : ; pn+k and, for n + 1 6 i 6 n + k, it is (H ′
j

)pi = �

i

j

and (K ′)pi = �

i

.

Therefore, the kits [H1; H
′
1]; : : : ; [Hm

; H

′
m

]; [K;K ′] have n + k terminal paths q1 = lp1; : : : ; qn = lp

n

;

q

n+1 = rp

n+1; : : : ; qn+k = rp

n+k . For 1 6 i 6 n, it is [H
j

; H

′
j

]qi = H

p

i

j

= �

i

j

and [K;K ′]qi = K

p

i = �

i

,

while, for n+ 1 6 i 6 n+ k, it is [H
j

; H

′
j

]qi = (H ′
j

)pi = �

i

j

and [K;K ′]qi = (K ′)pi = �

i

.℄ Hene, the IH

gives a (�′
0)
? :: x1 : [H1; H

′
1]; : : : ; xm : [H

m

; H

′
m

] ⊢ t : [K;K ′] in IUL

?

k

. Applying (P)

l

to (�′
0)
?

, we get a

(�′)? :: x1 : H1; : : : ; xm : H
m

⊢ t : K in IUL

?

k

.

.

�

?

0 :: t : (M∪ [A])
x1;:::; xm

(D)

�

? :: t : (M∪ [A;A])
x1;:::; xm

where M = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] and A = (�n+1
1 ; : : : ; �

n+1
m

; �
n+1).

If H1; : : : ; Hm

;K is a kit-representation of M ∪ [A;A], the kits H1; : : : ; Hm

;K have n + 2 terminal

paths p1; : : : ; pn; pn+1; pn+2 and, for 1 6 i 6 n, it is H

p

i

j

= �

i

j

andK

p

i = �

i

, while H

p

n+1

j

= H

p

n+2

j

= �

n+1
j

and K

p

n+1 = K

p

n+2 = �

n+1. We may prune all kits in H1; : : : ; Hm

;K at suh a path, so as to get a

sequene H

′
1; : : : ; H

′
m

;K

′
of overlapping kits that have n + 1 terminal paths q1; : : : ; qn; qn+1 and, for

1 6 i 6 n, it is (H ′
j

)qi = �

i

j

and (K ′)qi = �

i

, while (H ′
j

)qn+1 = �

n+1
j

and (K ′)qn+1 = �

n+1. The sequene

H

′
1; : : : ; H

′
m

;K

′
is a kit-representation of M∪ [A], so the IH gives a (�′

0)
? :: x1 : H ′

1; : : : ; xm : H ′
m

⊢ t : K ′

in IUL

?

k

. Applying an appropriate (i.e. left or right) doubling at an appropriate path to (�′
0)
?

, so as to

iterate the leaf at the end of q

n+1, we get a (�′)? :: x1 : H1; : : : ; xm : H
m

⊢ t : K in IUL

?

k

.

.

�

?

0 :: t : (M0) x1;:::; xm �

?

1 :: u : (M1) x1;:::; xm; x
(∪E)

�

? :: u[t=x] :M
x1;:::; xm

where M0 = [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n] ∪ [(�1; : : : ; �m ; � ∪ �)],
M1 = [(�i1; : : : ; �

i

m

; �

i

;  
i

) | 1 6 i 6 n] ∪ [(�1; : : : ; �m; � ; �); (�1; : : : ; �m; � ; �)], and
M = [(�i1; : : : ; �

i

m

;  
i

) | 1 6 i 6 n] ∪ [(�1; : : : ; �m ; �)].

If H1; : : : ; Hm

; L is a kit-representation of M, the kits H1; : : : ; Hm

; L have n + 1 terminal paths

p1; : : : ; pn; q and, for 1 6 i 6 n, it is H

p

i

j

= �

i

j

and L

p

i =  

i

, while H

q

j

= �

j

and L

q = �. Then,

the sequene H1; : : : ; Hm

;K[q := � ∪ � ], where K = L[p
i

:= �

i

], is a kit-representation of M0 and the

sequene H1
q

=

ql

; : : : ; H

m

q

=

ql

;K[q := [�; � ]]; L[q := [�; �]] is a kit-representation of M1. The IH yields a

(�′
0)
? :: x1 : H1; : : : ; xm : H

m

⊢ t : K[q := � ∪ � ] in IUL

?

k

and also a

(�′
1)
? :: x1 : H1

q

=

ql

; : : : ; x

m

: H
m

q

=

ql

; x : K[q := [�; � ]] ⊢ u : L[q := [�; �]]
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in IUL

?

k

. By (∪E)
q

, we then obtain a (�′)? :: x1 : H1; : : : ; xm : H
m

⊢ u[t=x] : L[q := �] = L in IUL

?

k

. ⊣

As already noted in desribing the method to attain a moleule from a kit-judgement, Theorem 3.18

indiates that eah terminal path of the kits in the onlusion of � gives rise to an atom in the moleule

proved by �

′
. Conversely, Proposition 3.19 indiates that all formulas in an atom of M are leaves at the

same terminal path in a kit-representation of M. Therefore, terminal paths in IUL

k

orrespond to atoms

in IUL

m

. In addition, it is easy to see, in both theorems 3.18 and 3.21, that the ontext-ardinality of

the judgement proved by an IUL

k

-derivation oinides with the atom ontext-ardinality of the moleule

proved by its orresponding IUL

m

-derivation.

3.2.2 Relating IUL

m

to MLns

We an restate Theorem 3.10 in the moleule framework and prove it via the equivalene of IUL

k

and

IUL

m

.

Theorem 3.22 (From IUL

m

to MLns) Let � :: [(�i1; : : : ; �
i

m

; �
i

)|1 6 i 6 n] be a derivation in IUL

m

,

suh that �

? :: t : [(�i1; : : : ; �
i

m

; �
i

) | 1 6 i 6 n]
x1;:::; xm . For every i ∈ {1; : : : ; n}, there is a derivation

�

i :: �i1; : : : ; �
i

m

⊢ �
i

in MLns, suh that (�i)? :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

.

Proof. Either by indution on � or by theorems 3.21 and 3.10. ⊣

Example 3.23 The IUL

k

-derivation � :: [�; � ] ⊢ [(� → �) → �; � → �] given in Example 3.12, where

� = � ∩ �, � =  ∩ Æ, and � = (Æ → �) ∩ (� → �), orresponds to the IUL

m

-derivation

�̃ :: [(� ; (� → �) → �); (� ; �→ �)]

aording to Theorem 3.18. We denote Γ = �; � → � and ∆ = �; �.

[(� ; �); (� ; �)]
(W)

[(Γ ; �); (∆ ; �)]
(∩E)

[(Γ ; �); (∆ ; Æ)]
(∪I)

[(Γ ; �); (∆ ; Æ ∪ �)]

[(� → � ; � → �); (� ; �); (� ; �)]
(WX)

[(Γ; � ; � → �); (∆; Æ ; �); (∆; � ; �)]
(∩E)

[(Γ; � ; � → �); (∆; Æ ; Æ → �); (∆; � ; � → �)]

[(� ; �); (Æ ; Æ); (� ; �)]
(WX)

[(Γ; � ; �); (∆; Æ ; Æ); (∆; � ; �)]
(→E)

[(Γ; � ; �); (∆; Æ ; �); (∆; � ; �)]
(∪E)

[(Γ ; �); (∆ ; �)]
(→I)

�̃ :: [(� ; (� → �) → �); (� ; � → �)]

The deoration of �̃ is idential to that of �, i.e. it is (�̃)? :: �y: yx : [(� ; (� → �) → �); (� ; �→ �)]
x

.

This �̃ gives two derivations in MLns, namely �̃

1 = �

l :: � ⊢ (� → �) → � and �̃

2 = �

r :: � ⊢ �→ �.

The substitution operation arried out to generate �̃

1
is now in full aordane to the substitution (ut)

performed on the atoms (Γ;�) and (Γ; �; �) in the premises of (∪E).

From MLns to IUL

m

?

The problem of the deomposition of substitution, disussed in the subsetion \From MLns to IUL

k

?",

is also met in the attempt to prove the inverse of Theorem 3.22.

If �

? :: x1 : �1; : : : ; xm : �
m

⊢ t : � is in MLns

?

, we would like to show, modulo the onversion

of onnetives, that there exists a (�′)? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm in IUL

?

m

. An indution on �

?

,

though, would hit a problem in the (∧I) ase and also in the (∨E) ase.



3.3 Disussion of kits and moleules 59

�

?

0

x1 : �1; : : : ; xm : �
m

⊢ t : � ∨ �

�

?

1

x1 : �1; : : : ; xm : �
m

; x : � ⊢ u : �

�

?

2

x1 : �1; : : : ; xm : �
m

; x : � ⊢ u : �
(∨E)

�

? :: x1 : �1; : : : ; xm : �
m

⊢ u[t=x] : �

The IH would give derivations (�′
0)
?

; (�′
1)
?

, and (�′
2)
?

in IUL

?

m

, as shown below.

(�′
0)
? :: t : [(�1; : : : ; �m ; � ∪ �)]

x1;:::; xm

(�′
1)
? :: u : [(�1; : : : ; �m; � ; �)]x1;:::; xm; x

(�′
2)
? :: u : [(�1; : : : ; �m; � ; �)]x1;:::; xm; x

We would like to be able to merge the identially deorated �

′
1 and �

′
2 into a single

(�′
12)

? :: u : [(�1; : : : ; �m; � ; �); (�1; : : : ; �m; � ; �)]x1;:::; xm; x

so that applying (∪E) to (�′
0)
?

and (�′
12)

?

would give a (�′)? :: u[t=x] : [(�1; : : : ; �m ; �)]
x1;:::; xm . The

laim that two identially deorated derivations an be uni�ed to give a single derivation with this very

deoration is rephrased in the moleule setup as follows.

Claim: Two identially deorated IUL

m

-derivations �

?

0 :: t : [(Γ
i

; �
i

) | 1 6 i 6 n]
x1;:::; xm

and �

?

1 :: t : [(Γ
i

; �
i

) | n+ 1 6 i 6 k]
x1;:::; xm an be ombined into a single IUL

m

-derivation

�

? :: t : [(Γ
i

; �
i

) | 1 6 i 6 k]
x1;:::; xm with this very deoration.

However, as in the ase of IUL

k

, there is no natural way to join together two derivations whose deorating

term derives from two di�erent kinds of substitution (see Example 3.13).

3.3 Disussion of kits and moleules

As already explained, the use of moleules reveals the globality inherent in union elimination. Terminal

paths in IUL

k

orrespond to atoms in IUL

m

and atually an atom in a moleule is onstruted by

abstrating a spei� terminal path from a kit-judgement. Thus, the union elimination rule in IUL

m

brings to light the \ation" at every terminal path in the orresponding rule in IUL

k

. This is made lear

in the following orresponding instanes of the rule in IUL

k

and IUL

m

.

H

j

[p := �

j

] ⊢ K[p := � ∪ � ]
︸ ︷︷ ︸

terminal paths q1; : : : ; qn; p

H

j

[p := [�
j

; �

j

]]; K[p := [�; � ]] ⊢ L[p := [�; �]]
︸ ︷︷ ︸

terminal paths q1; : : : ; qn; pl; pr
(∪E)

p

H

j

[p := �

j

] ⊢ L[p := �]
︸ ︷︷ ︸

terminal paths q1; : : : ; qn; p

[(i
j

; �
i

) | 1 6 i 6 n

︸ ︷︷ ︸

atoms B0
1 ; : : : ;B

0
n

] ∪ [(�
j

; � ∪ � )
︸ ︷︷ ︸

atom A0

] [(i
j

; �

i

;  
i

) | 1 6 i 6 n

︸ ︷︷ ︸

atoms B1
1 ; : : : ;B

1
n

] ∪ [(�
j

; � ; �); (�
j

; � ; �)
︸ ︷︷ ︸

atoms A1
1;A

1
2

]

(∪E)

[(i
j

;  
i

) | 1 6 i 6 n

︸ ︷︷ ︸

atoms B1; : : : ;Bn

] ∪ [(�
j

; �)
︸ ︷︷ ︸

atom A

]
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In the major premises, leaves at terminal paths q1; : : : ; qn translate to atoms B0
1; : : : ;B

0
n

, respetively, while

leaves at p translate to A0
; similar orrespondenes hold for the minor premises and the onlusions. The

ation at paths q1; : : : ; qn, whih is hidden in the IUL

k

-instane, is brought to light in the IUL

m

-instane.

The latter works loally on atoms A0
;A1

1;A
1
2, where it performs a proper union elimination to render

atom A, and globally on the B0
i

's and B1
i

's, where it performs substitutions (uts) on orresponding atoms

to provide the B
i

's. Therefore, union elimination in IUL

m

displays both loal and global harateristis.

In fat, union elimination in IUL

k

enjoys both harateristis, as well. The rule an be rewritten as

follows, if we aim to unfold what happens at a path q

i

besides p.

H

j

[p := �

j

][q
i

:= 

i

j

] ⊢ K[p := � ∪ � ][q
i

:= �

i

] H

j

[p := [�
j

; �

j

]][q
i

:= 

i

j

];K[p := [�; � ]][q
i

:= �

i

] ⊢ L[p := [�; �]][q
i

:=  

i

]

H

j

[p := �

j

][q
i

:= 

i

j

] ⊢ L[p := �][q
i

:=  

i

]

The substitution arried out at q

i

is now designated by the rule. This hidden aspet of union elimination

in IUL

k

has been atually demonstrated in the proof of Theorem 3.10 (ase (∪E), subase 1) and also in

Example 3.12, where a substitution operation was required for the formation of �

l

.

The bene�t of unveiling loality and globality issues is only one aspet of the more general bene�t of

adopting a notation for Intersetion and Union Logi that is simpler and easier to handle. The formalism

of kits, whih seeks to rereate the geometri strutures of trees, an be awkward and vague, as it has so

far been veri�ed. On the other hand, the formalism of moleules, whih has arisen from the attening of

kits by onverting (leaves at) terminal paths to atoms, is more lean-ut and expliit.

A di�erent formalism for a logi orresponding to intersetion (and union) types is that of hyperformu-

las, proposed in [6℄. Hyperformulas also linearize the kit-struture, as moleules do, but are nonetheless

harder to manipulate than moleules. Very roughly speaking, the syntax of hyperformulas is easier than

that of kits, but more ompliated than that of moleules. Consequently, hyperformulas also enounter

the problem that moleules (and kits) enounter in orresponding with MLns. We have foused on the

omparison of kits with moleules, leaving hyperformulas aside, so as to better indiate the advantages

of moleules, whih bear the most onise formalism among the three.



CHAPTER 4

Natural Dedution IUL

m

and IUT

⊕

We present a new version of the logi IUL

m

in natural dedution style. This new version involves a

modi�ation of the de�nition of \moleule", as well as modi�ations of rules. In partiular, a moleule

is no longer a multiset of atoms, but a sequene of atoms, while the rules of the system undergo the

following hanges: (i) the axiom is allowed to ontain enrihed atom-ontexts, (ii) the strutural rules

of weakening, pruning, and doubling are eliminated, but are still valid as derivable rules, (iii) the loal

rules of intersetion (introdution and elimination) and union introdution are allowed to at on several

atoms (or sequenes of atoms) of a moleule in one step, and (iv) the union elimination rule is modi�ed

to an expliitly global version. We also present the type system IUT

⊕
in natural dedution style. This

system is atually the natural dedution type system IUT

ù

of Chapter 2 without the (ù)-rule. The \⊕"
sign emphasizes its additive harater. We �nally interrelate the new natural dedution logi with the

natural dedution type system to show how the former attempts to apture the latter on a logial level.

The hanges that the new version of the logi bears, with respet to the version presented in the

previous hapter, an be briey justi�ed as follows. Change (i) allows the derivability of weakening

(observe the base ase in the indutive proof of Proposition 4.5), while hange (ii) provides a more

eonomial, elegant, and handy system. Change (iii) serves the derivability of doubling (see footnote 6

in ase 1 of (∩I) in the indutive proof of Proposition 4.11(ii)), while hange (iv) provides a system with

an expliit ategorization of rules as global or loal, whih lies at the ore of the method that will be

used in the next hapter to show orrespondene theorems between the logi and the type system (see

Setion 5.4 for a detailed justi�ation of this method).

4.1 The logi IUL

m

in natural dedution

We rede�ne the natural dedution logi IUL

m

, �rst introdued in Chapter 3, as follows.

De�nition 4.1 (IUL

m

) (i) Formulas are generated by the grammar � ::= � |� → � |�∩� |�∪�, where
� belongs to a ountable set of atomi formulas. An atom is a pair (Γ ; �), where the ontext Γ is a �nite

sequene of formulas.

(ii) Moleules are �nite sequenes of atoms, suh that all atoms share the same ontext ardinality.

A moleule M = [(Γ1 ; �1); : : : ; (Γn ; �n)] is also denoted [(Γ
i

; �
i

)n
i=1] or [(Γ

i

; �
i

)n1 ] or just [(Γ
i

; �
i

)
i

].
Sequenes of atoms whih are subsequenes of moleules are denoted by U ;V.

(iii) The logial system IUL

m

proves moleules in natural dedution style by the rules displayed in

Figure 4.1. The index i in moleules runs from 1 to n.
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⊕

(ax)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

[U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
(∩I)

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E1)

[U ; (Γ
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E2)

[U ; (Γ
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪I1)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪I2)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[(Γ
i

; �
i

∪ �
i

)
i

] [((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
(∪E)

[(Γ
i

; �
i

)
i

]

Figure 4.1: The logi IUL

m

in natural dedution style.

Remark 4.2 (i) In the exhange rule (X), the Γ
i

's have the same ardinality.

(ii) The intersetion (introdution and elimination) and union introdution rules presented in Fig-

ure 4.1 are, in fat, speial versions of the atual intersetion (introdution and elimination) and union

introdution rules; this is done for simpliity and spae eonomy. The atual (∩I) rule is meant as shown

below.

[U1; (Γ1 ; �1); (Γ1 ; �1);U2; (Γ2 ; �2); (Γ2 ; �2); : : : ;Un; (Γn ; �n); (Γn ; �n);Un+1]
(∩I)

[U1; (Γ1 ; �1 ∩ �1);U2; (Γ2 ; �2 ∩ �2); : : : ;Un; (Γn ; �n ∩ �n);Un+1]

The atual (∩E1),(∩E2),(∪I1), and (∪I2) rules an be �gured from their speial ases in a similar manner.

The ategorization of rules as global or loal is aording to whether they a�et all or some atoms in

premise level, respetively. The exhange rule, the impliation rules, and the union elimination rule are

global, while the intersetion rules and the union introdution rules are loal

1

. Unlike the ase of IUL

m

as presented in Chapter 3, where union elimination assembled both global and loal harateristis, the

lassi�ation of rules as global or loal is here very lear and de�nite.

The onnetives of the grammar are all additive. This is done by neessity in the ases of intersetion

introdution and union introdution. The laim that atoms in the same moleule should have the same

ontext ardinality forbids a multipliative presentation of the intersetion introdution rule; a multi-

pliative premise [(E
i

; �
i

)k1 ; ((Γi ; �i); (∆i

; �
i

))n1 ] with |E
i

| = |Γ
i

| = |∆
i

| = m would give a onlusion

[(E
i

; �
i

)k1 ; (Γi;∆i

; �
i

∩ �
i

)n1 ] with |E
i

| = m, but |Γ
i

;∆
i

| = 2m. Moreover, the intuitionisti laim that

atoms should ontain exatly one formula to the right of \;" forbids a multipliative presentation of

1

Loal rules beome global to the limit where U and V are empty.
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the union introdution rule; a multipliative premise [U ; (Γ
i

; �
i

; �

i

)
i

;V ] would no longer belong to an

intuitionisti system. On the other hand, the additive style is piked by hoie in the ases of impliation

elimination and union elimination. Indeed, the impliation elimination rule an also be presented in a

multipliative manner, that is with premises [(Γ
i

; �
i

→ �

i

)
i

]; [(∆
i

; �
i

)
i

] and onlusion [(Γ
i

;∆
i

; �
i

)
i

]. As
far as the union elimination rule is onerned, the hoie of additive style refers to both i) the right-premise

\twin" atoms (Γ
i

; �

i

; �
i

) and (Γ
i

; �

i

; �
i

) and ii) the left-premise atom (Γ
i

; �
i

∪ �
i

) and its orresponding

right-premise twin atoms (Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

). Abolishing the additiveness with respet to (ii) still

yields an aeptable union elimination rule with a mixed multipliative-additive harater (see (∪E)2

below), while further abolishing the additiveness with respet to (i) also provides an aeptable union

elimination rule with a purely multipliative harater (see (∪E)3 below).

[(Γ
i

; �
i

∪ �
i

)
i

] [((∆
i

; �

i

; �
i

); (∆
i

; �

i

; �
i

))
i

]
(∪E)2

[(Γ
i

;∆
i

; �
i

)
i

]

[(Γ
i

; �
i

∪ �
i

)
i

] [((∆
i

; �

i

; �
i

); (E
i

; �

i

; �
i

))
i

]
(∪E)3

[(Γ
i

;∆
i

; E

i

; �
i

)
i

]

In an IUL

m

-derivation, an exhange inferene an be moved upward above all the inferenes of logial

rules

2

, so that only an axiom and possibly some other exhange inferenes may appear above it. This is

formalized by the next de�nition and proposition.

De�nition 4.3 (Canonial derivation) An IUL

m

-derivation � is anonial

3

, if every exhange infer-

ene in � appears just below an axiom or another exhange inferene.

The de�nition implies that, roughly speaking, a branh in the tree of a anonial derivation onsists

of an axiom, whih is followed by a (possibly empty) sequene of exhange inferenes, whih is, in turn,

followed by a (possibly empty) sequene of inferenes of logial rules.

Proposition 4.4 For every � :: M, there is a anonial �

′ :: M.

Proof. This is formally proved by indution on �. In pratie, it suÆes to show that the exhange rule

ommutes with any logial rule. We show two harateristi ases.

. A loal logial rule: (∩I)

[(E
i

; �

i

;  

i

; Z

i

; �
i

)k1 ; ((Γi; �i; �i;∆i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �
i

))n1 ]
(∩I)

[(E
i

; �

i

;  

i

; Z

i

; �
i

)k1 ; (Γi; �i; �i;∆i

; �
i

∩ �
i

)n1 ]
(X)

[(E
i

;  

i

; �

i

; Z

i

; �
i

)k1 ; (Γi; �i; �i;∆i

; �
i

∩ �
i

)n1 ]

❀

[(E
i

; �

i

;  

i

; Z

i

; �
i

)k1 ; ((Γi; �i; �i;∆i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �
i

))n1 ]
(X)

[(E
i

;  

i

; �

i

; Z

i

; �
i

)k1 ; ((Γi; �i; �i;∆i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �
i

))n1 ]
(∩I)

[(E
i

;  

i

; �

i

; Z

i

; �
i

)k1 ; (Γi; �i; �i;∆i

; �
i

∩ �
i

)n1 ]

2

A logial rule is a rule introduing or eliminating a logial onnetive.

3

The term \anonial" is borrowed from [15℄.
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. A global logial rule: (∪E)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

∪ �
i

)
i

] [((Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

))
i

]
(∪E)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

❀

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

∪ �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

∪ �
i

)
i

]

[((Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

))
i

]
(X)

[((Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

;∆
i

; �

i

; �
i

))
i

]
(∪E)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
⊣

The strutural rules of weakening and ontration are derivable, as the next two propositions show.

Proposition 4.5 Weakening is derivable: if � :: [(Γ
i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. By indution on �.

Base: If � :: [(Γ
i

; �

i

; �
i

)
i

] is an axiom, then a �

′ :: [(Γ
i

; �

i

; �

i

; �
i

)
i

] ontains an axiom [(Γ
i

; �

i

; �

i

; �
i

)
i

]
and an appliation of exhange.

Indution step: We show three harateristi ases, denoting [h℄ the indution hypothesis.

.

�0 :: [(Γ
i

; �

i

; �
i

)
i

]
(→I)

� :: [(Γ
i

; �
i

→ �

i

)
i

]
❀

�

′
0 :: [(Γ

i

; �

i

; �

i

; �
i

)
i

] [h℄

(X)

[(Γ
i

; �

i

; �

i

; �
i

)
i

]
(→I)

�

′ :: [(Γ
i

; �

i

; �
i

→ �

i

)
i

]

.

�0 :: [(∆
i

; �
i

)k1 ; ((Γi ; �i); (Γi ; �i))
n

1 ]
(∩I)

� :: [(∆
i

; �
i

)k1 ; (Γi ; �i ∩ �i)
n

1 ]
❀

�

′
0 :: [(∆

i

;  

i

; �
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ] [h℄

(∩I)

�

′ :: [(∆
i

;  

i

; �
i

)k1 ; (Γi; �i ; �i ∩ �i)
n

1 ]

.

�0 :: [(Γ
i

; �
i

∪ �
i

)
i

] �1 :: [((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
(∪E)

� : [(Γ
i

; �
i

)
i

]
❀

�

′
0 :: [(Γ

i

; �

i

; �
i

∪ �
i

)
i

] [h℄

�

′
1 :: [((Γ

i

; �

i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

; �
i

))
i

] [h℄

(X)

[((Γ
i

; �

i

; �

i

; �
i

); (Γ
i

; �

i

; �

i

; �
i

))
i

]
(∪E)

�

′ :: [(Γ
i

; �

i

; �
i

)
i

]
⊣

Proposition 4.6 Contration is derivable: if � :: [(Γ
i

; �

i

; �

i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. We derive ontration through an impliation redex.

� :: [(Γ
i

; �

i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �

i

; �
i

→ �

i

)
i

]
(ax)

[(Γ
i

; �

i

; �
i

)
i

]
(→E)

�

′ :: [(Γ
i

; �

i

; �
i

)
i

]



4.1 The logi IUL

m

in natural dedution 65

We an hek that, if we hose a multipliative impliation elimination rule, the derivability of on-

tration through an impliation redex would fail. A proof by indution on � would also fail. ⊣

We next de�ne the notions of tree (of a derivation) and of derivation height, whih will be used in

subsequent propositions.

De�nition 4.7 (Tree) The tree T (or T

�

) of a derivation � is de�ned indutively as follows.

. If � is an axiom, the tree T onsists of a single node.

. If � derives from �0 with tree T0 by a one-premise rule R, then the root of tree T has a single

hild-node, namely the root of T0.

�0
R

�

❀

•
T

•
T0

R

. If � derives from �0 and �1 with trees T0 and T1, respetively, by a two-premise rule R, then the

root of tree T has two hild-nodes, namely the roots of T0 and T1.

�0 �1
R

�

❀

•
T0

◗
◗
◗
◗◗•

T

R

✑
✑
✑
✑✑

•
T1

. If

4

� derives from �0; �1, and �2 with trees T0; T1, and T2, respetively, by a three-premise rule R,

then the root of tree T has three hild-nodes, namely the roots of T0; T1, and T2.

�0 �1 �2
R

�

❀

•
T0

◗
◗
◗
◗◗•

T

R

•
T1

✑
✑
✑
✑✑

•
T2

In the indution ases, the node assoiated to the rule R is the root of T .

De�nition 4.8 (Derivation height) The derivation height h (or h

�

) of a derivation � is the height

of the tree of �, i.e. the maximal length of the branhes in the tree, where the length of a branh is the

number of nodes in the branh minus 1.

4

We inlude the ase of a three-premise rule in preparation for the presentation of the type system IUT

⊕
, whose (∪E)

rule has three premises.
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Remark 4.9 For any derivations � and �

′
, we have that T = T

′ ⇒ h = h

′
, but h = h

′ ; T = T

′
.

Before we establish the derivability of the strutural rules of pruning and doubling, we need to show

that atoms an be exhanged in provable moleules.

Proposition 4.10 If � :: [U ;A;B;V ], there exists a �

′ :: [U ;B;A;V ] with T ′ = T .

Proof. By indution on �.

Base: If � :: [U ;A;B;V ] is an axiom, then �

′ :: [U ;B;A;V ] is an axiom, as well. Both T and T

′

onsist of a single node.

Indution step: We present two harateristi ases.

. A loal rule: (∩I)

Case 1:

�0 :: [U0;A0;A1;B0;B1;V0]
(∩I)

� :: [U ;A;B;V ]

where |U| 6 |U0| and |V| 6 |V0|

Applying the IH four times

5

, we get a �

′
0 :: [U0;B0;B1;A0;A1;V0] with T

′
0 = T0. By (∩I), we then

get a �

′ :: [U ;B;A;V ] with T ′ = T .

Case 2:

�0 :: [U0;A0;A1;B;V0]
(∩I)

� :: [U ;A;B;V ]

where |U| 6 |U0| and |V| 6 |V0|

Applying the IH twie, we obtain a �

′
0 :: [U0;B;A0;A1;V0] with T

′
0 = T0. By (∩I), we then get a

�

′ :: [U ;B;A;V ] with T ′ = T .

Case 3:

�0 :: [U0;A;B;V0]
(∩I)

� :: [U ;A;B;V ]

where either (|U| < |U0| and |V| 6 |V0|) or (|U| 6 |U0| and |V| < |V0|)

The IH gives a �

′
0 :: [U0;B;A;V0] with T

′
0 = T0. By (∩I), we then get a �

′ :: [U ;B;A;V ] with T ′ = T .

. A global rule: (∪E)

�0 :: [U0;A0;B0;V0] �1 :: [U1;A10;A11;B10;B11;V1]
(∪E)

� :: [U ;A;B;V ]

where |U1| = 2|U0| and |U| = |U0|

The IH on �0 gives a �

′
0 :: [U0;B0;A0;V0] with T

′
0 = T0. Starting with �1 and applying the IH four

times, we get a �

′
1 :: [U1;B10;B11;A10;A11;V1] with T

′
1 = T1. Then, applying (∪E) to �′

0 and �

′
1, we

obtain a �

′ :: [U ;B;A;V ] with T ′ = T . ⊣

Proposition 4.11 (i) Pruning is derivable: if � :: [U ;V ], there exists a �

′ :: [U ] with h′ 6 h.

(ii) Doubling is derivable: if � :: [U ;A ], there exists a �

′ :: [U ; 2A ] with T ′ = T , where 2A = A;A.

5

We an have multiple appliations of the IH, as the exhange of atoms leaves the tree, and hene the height, unaltered.
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Proof. (i) By indution on �.

Base: If � :: [U ;V ] is an axiom, then �

′ :: [U ] is an axiom, as well, and both heights equal 0.

Indution step: We demonstrate two harateristi ases.

. A global rule: (→E)

�0 :: [U0;V0] �1 :: [U1;V1]
(→E)

� :: [U ;V ]

where |U0| = |U1| = |U|

The IH gives a �

′
0 :: [U0] with h

′
0 6 h0 and a �

′
1 :: [U1] with h

′
1 6 h1. By (→E), we then get a �

′ :: [U ]
with h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

. A loal rule: (∩I)

Case 1:

�0 :: [U0;V0]
(∩I)

� :: [U ;V ]

where |U| < |U0|

The IH gives a �

′
0 :: [U0] with h

′
0 6 h0. By (∩I), we then get a �

′ :: [U ] with h′ = h

′
0+1 6 h0+1 = h.

Case 2:

�0 :: [U ;V0]
(∩I)

� :: [U ;V ]

where |V| < |V0|

The IH gives a �

′
0 :: [U ] with h′0 6 h0. It is �

′ = �

′
0 and h

′ = h

′
0 < h.

(ii) By indution on �.

Base: If � :: [U ;A] is an axiom, then �

′ :: [U ; 2A] is an axiom, as well, and both trees onsist of a

single node.

Indution step: We expose two harateristi ases.

. A loal rule: (∩I)

Case 1:

�0 :: [U0;A0;A1]
(∩I)

� :: [U ;A ]

where |U| 6 |U0|

The IH gives a �

′
0 :: [U0;A0; 2A1] with T

′
0 = T0. Then, by two appliations of 4.10, we obtain a

�

2
0 :: [U0; 2A1;A0] with T

2
0 = T0. By the IH one again

6

, we get a �

3
0 :: [U0; 2A1; 2A0] with T

3
0 = T0.

Starting with �

3
0 and applying 4.10 three times, we derive a �

4
0 :: [U0; 2(A0;A1)] with T

4
0 = T0. Finally,

applying (∩I) to �4
0 , we get a �

′ :: [U ; 2A] with T ′ = T .

6

To apply the IH one again and double A0 after having doubled A1, whih is an important step for the derivability of

doubling in this ase, we need to have the onlusion that T

′ = T in the statement of the derivability of doubling and also

in the statement of the derivability of atom exhange. In the ase of the derivability of doubling, though, this onlusion is

not be maintained, if the loal rules of intersetion (introdution and elimination) and union introdution are not allowed

to at on more than one atom (or sequene of atoms) in one step. The reader may easily verify this by attempting the

urrent ase of (∩I) with a version of the rule ating solely on one sequene of atoms A0;A1 or the orresponding ase of

(∩E) (resp. (∪I)) with a version of the rule ating solely on one atom A0.
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Case 2:

�0 :: [U0;A ]
(∩I)

� :: [U ;A ]

where |U| < |U0|

The IH yields a �

′
0 :: [U0; 2A ] with T ′

0 = T0. By (∩I), we then get a �

′ :: [U ; 2A ] with T ′ = T .

. A global rule: (∪E)

�0 :: [U0;A0] �1 :: [U1;A10;A11]
(∪E)

� :: [U ;A]

The IH on �0 gives a �

′
0 :: [U0; 2A0] with T

′
0 = T0, while the IH on �1 yields a �

′
1 :: [U1;A10; 2A11]

with T

′
1 = T1. Starting with �

′
1 and applying 4.10 twie, we get a �

2
1 :: [U1; 2A11;A10] with T

2
1 = T1. The

IH on �

2
1 gives a �

3
1 :: [U1; 2A11; 2A10] with T

3
1 = T1. Starting with �

3
1 and applying 4.10 three times, we

derive a �

4
1 :: [U1; 2(A10;A11)] with T

4
1 = T1. Finally, applying (∪E) to �

′
0 and �

4
1 , we get a �

′ :: [U ; 2A]
with T

′ = T . ⊣

Remark 4.12 An alternative phrasing for the derivability of weakening and ontration, whih inludes

the notion of \tree", is the following.

(i) Weakening is derivable: if � :: [(Γ
i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same ardinality and the

∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

] with T ′ = T .

(ii) Contration is derivable: if � :: [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same ardinality and

the ∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

] with T ′ = T .

For both (i) and (ii), the proof is by indution on �. If the ∆
i

's are empty in (i), the indution works,

only if the onlusion T

′ = T is removed (see Proposition 4.5). If the ∆
i

's are empty in (ii), the indution

does not work. We an only derive ontration through an impliation redex (see Proposition 4.6), in

whih ase the onlusion T

′ = T does not hold.

If we onsider a union elimination rule (∪E)′ that resembles the union elimination rule of the pre-

sentation of IUL

m

given in Chapter 3, we an show that it is derivable in the urrent presentation of

IUL

m

.

[(∆
i

; �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ] [(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
(∪E)′

[(∆
i

;  
i

)k1 ; (Γi ; �i)
n

1 ]

We use the derivable rule (∪E)′ in Chapter 7, where we introdue a sequent alulus presentation of IUL
m

,

to failitate the proof of equivalene between the natural dedution and sequent alulus presentations

of IUL

m

(see Theorem 7.2).

Proposition 4.13 The rule (∪E)′ is derivable: if

�0 :: [(∆
i

; �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ] and �1 :: [(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]

there exists a � :: [(∆
i

;  
i

)k1 ; (Γi ; �i)
n

1 ].



4.2 The type system IUT

⊕
in natural dedution 69

Proof. We derive (∪E)′ through a union redex, with the aid of Propositions 4.10 and 4.11(ii).

�0 :: [(∆
i

; �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ]
(∪I)

[(∆
i

; �
i

∪ �
i

)k1 ; (Γi ; �i ∪ �i)
n

1 ]

�1 :: [(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
[4.10, 4.11(ii)℄

[((∆
i

; �

i

;  
i

); (∆
i

; �

i

;  
i

))k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
(∪E)

� :: [(∆
i

;  
i

)k1 ; (Γi ; �i)
n

1 ]

⊣

Having rede�ned the logi and established its basi properties, we move on to present the type system

and demonstrate some (new) properties of it.

4.2 The type system IUT

⊕
in natural dedution

As already mentioned, the type system IUT

⊕
in natural dedution style is the natural dedution type

system IUT

ù

of Chapter 2 without the (ù)-rule. It assigns types � ::= � | � → � | � ∩ � | � ∪ � to terms

t ∈ Λ aording to the rules in Figure 4.2.

(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

B ⊢ t : �
(∪I1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪I2)
B ⊢ t : � ∪ �

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

B ⊢ u[t=x] : �

Figure 4.2: The type system IUT

⊕
in natural dedution style.

Let us denote V

�

(or just V ) the set of all term variables appearing in a derivation � of IUT

⊕
.

The next proposition establishes that renaming

7

of a term variable, weakening and strengthening of the

assumptions, and ontration of basi typing statements are all admissible in IUT

⊕
.

7

The term \renaming" is very ommon in the literature, when speaking of a variable hange in the assumptions (e.g.

see [2℄). Although we use this terminology to be in aordane with the majority of authors, it is important to stress that

the hange in question does not atually onern the name of the variable, but the variable itself.
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Proposition 4.14 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respet to �, there exists a

�

′ :: B; y : � ⊢ t[y=x] : � , suh that V

′ = (V \ {x}) ∪ {y} and T

′ = T .

(ii) (Weakening) If � :: B ⊢ t : � and x is fresh with respet to �, there exists a �

′ :: B; x : � ⊢ t : � ,
suh that V

′ = V ∪ {x} and T

′ = T .

(iii) (Strengthening) If � :: B; x : � ⊢ t : � and x 6∈ FV (t), there exists a �

′ :: B ⊢ t : � , suh that

x 6∈ V

′  V and h

′ 6 h.

(iv) (Contration) If � :: B; x : �; y : � ⊢ t : � , there exists a �

′ :: B; x : � ⊢ t[x=y] : � , suh that

V

′ = V \ {y} and T

′ = T .

Proof. (i) By indution on �.

Base: If � is an axiom, we distinguish two ases.

Case 1: If � :: B; x : � ⊢ x : � with V = dom(B) ∪ {x}, there is an axiom �

′ :: B; y : � ⊢ y : �, suh
that V

′ = dom(B) ∪ {y} = (V \{x}) ∪ {y} and T ′ = T .

Case 2: If � :: B′
; z : �; x : � ⊢ z : � with V = dom(B′) ∪ {z; x}, there is an axiom

�

′ :: B′
; z : �; y : � ⊢ z : �

suh that V

′ = dom(B′) ∪ {z; y} = (V \{x}) ∪ {y} and T ′ = T .

Indution step: We demonstrate two typial ases.

.

�0 :: B; x : � ⊢ t : � → � �1 :: B; x : � ⊢ u : �
(→E)

� :: B; x : � ⊢ tu : �

Supposing that V

�0 = V0 ∪ {x} and V

�1 = V1 ∪ {x}, we get that V = V0 ∪ V1 ∪ {x}. The IH gives a

�

′
0 :: B; y : � ⊢ t[y=x] : � → �, suh that V

′
0 = V0∪{y} and T ′

0 = T0, and a �

′
1 :: B; y : � ⊢ u[y=x] : � , suh

that V

′
1 = V1 ∪ {y} and T ′

1 = T1. By (→E), we then get a �

′ :: B; y : � ⊢ (t[y=x])(u[y=x]) = (tu)[y=x] : �,
suh that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \{x}) ∪ {y} and T ′ = T .

.

�0 :: B; x : � ⊢ t : � ∪ � �1 :: B; x : �; z : � ⊢ u : � �2 :: B; x : �; z : � ⊢ u : �
(∪E)

� :: B; x : � ⊢ u[t=z] : �

Supposing that V

�

i

= V

i

∪ {x} (i = 0; 1; 2), we have that V =
⋃

i

V

�

i

= (
⋃

i

V

i

) ∪ {x}. The IH gives

a �

′
0 :: B; y : � ⊢ t[y=x] : � ∪ �, a �′

1 :: B; y : �; z : � ⊢ u[y=x] : �, and a �

′
2 :: B; y : �; z : � ⊢ u[y=x] : �,

suh that V

′
i

= V

i

∪ {y} and T

′
i

= T

i

. Applying (∪E) to �′
0; �

′
1, and �

′
2, we then obtain a

�

′ :: B; y : � ⊢ (u[y=x])[t[y=x]=z] = (u[t=z])[y=x] : �

suh that V

′ =
⋃

i

V

′
i

= (
⋃

i

V

i

) ∪ {y} = (V \{x}) ∪ {y} and T ′ = T .

For the rest of the proof, it is V

i

= V

�

i

(i = 0; 1; 2).

(ii) By indution on �.

Base: If � :: B′
; y : � ⊢ y : � is an axiom, there is an axiom �

′ :: B′
; y : �; x : � ⊢ y : � , suh that

V

′ = dom(B′) ∪ {y; x} = V ∪ {x} and T

′ = T .

Indution step: We one more demonstrate the ases of (→E) and (∪E).
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.

�0 :: B ⊢ t : � → � �1 :: B ⊢ u : �
(→E)

� :: B ⊢ tu : �

The IH yields a �

′
0 :: B; x : � ⊢ t : � → �, suh that V

′
0 = V0 ∪ {x} and T

′
0 = T0, and also a

�

′
1 :: B; x : � ⊢ u : � , suh that V

′
1 = V1 ∪ {x} and T

′
1 = T1. Applying (→E) to �

′
0 and �

′
1, we then get a

�

′ :: B; x : � ⊢ tu : �, suh that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {x} = V ∪ {x} and T

′ = T .

.

�0 :: B ⊢ t : � ∪ � �1 :: B; y : � ⊢ u : � �2 :: B; y : � ⊢ u : �
(∪E)

� :: B ⊢ u[t=y] : �

The IH gives a �

′
0 :: B; x : � ⊢ t : � ∪�, a �′

1 :: B; y : �; x : � ⊢ u : �, and a �

′
2 :: B; y : �; x : � ⊢ u : �,

suh that V

′
i

= V

i

∪ {x} and T

′
i

= T

i

(i = 0; 1; 2). Applying (∪E) to �

′
0; �

′
1, and �

′
2, we obtain a

�

′ :: B; x : � ⊢ u[t=y] : �, suh that V

′ =
⋃

i

V

′
i

= (
⋃

i

V

i

) ∪ {x} = V ∪ {x} and T

′ = T .

(iii) By indution on �.

Base: If � :: B′
; y : �; x : � ⊢ y : � is an axiom, there is an axiom �

′ :: B′
; y : � ⊢ y : � , suh that

x 6∈ V

′ = dom(B′) ∪ {y}  dom(B′) ∪ {y; x} = V and h

′ = h = 0.

Indution step: We show two distintive ases.

.

�0 :: B; x : �; y : � ⊢ t : �
(→I)

� :: B; x : � ⊢ �y: t : � → �

Sine x 6∈ FV (�y: t) and x 6= y, we have that x 6∈ FV (�y: t) ∪ {y} = FV (t). Hene, the IH yields a

�

′
0 :: B; y : � ⊢ t : �, suh that x 6∈ V

′
0  V0 and h

′
0 6 h0. By (→I), we then get a �

′ :: B ⊢ �y: t : � → �,

suh that x 6∈ V

′ = V

′
0  V0 = V and h

′ = h

′
0 + 1 6 h0 + 1 = h.

.

�0 :: B; x : � ⊢ t : � ∪ � �1 :: B; x : �; y : � ⊢ u : � �2 :: B; x : �; y : � ⊢ u : �
(∪E)

� :: B; x : � ⊢ u[t=y] : �

We suppose that x 6∈ FV (u[t=y]) and distinguish two ases.

Case 1: y 6∈ FV (u) ⇒ u[t=y] = u. The IH on �1 gives a �

′
1 :: B; x : � ⊢ u : �, suh that y 6∈ V

′
1  V1

and h

′
1 6 h1. Sine h

′
1 6 h1 < h and x 6∈ FV (u[t=y] = u), the IH on �

′
1 yields a �

′ :: B ⊢ u = u[t=y] : �,
suh that x 6∈ V

′  V

′
1  V1 ⊆ V0 ∪ V1 ∪ V2 = V and h

′ 6 h

′
1 < h.

Case 2: y ∈ FV (u) ⇒ x 6∈ FV (t) and x 6∈ FV (u). The IH gives derivations

�

′
0 :: B ⊢ t : � ∪ �; �′

1 :: B; y : � ⊢ u : �; and �′
2 :: B; y : � ⊢ u : �

suh that x 6∈ V

′
i

 V

i

and h

′
i

6 h

i

(i = 0; 1; 2). By (∪E), we obtain a �

′ :: B ⊢ u[t=y] : �, suh that

x 6∈ V

′ =
⋃

i

V

′
i

 
⋃

i

V

i

= V and h

′ = max

i

(h′
i

) + 1 6 max

i

(h
i

) + 1 = h.

(iv) By indution on �.

Base: If � is an axiom, we distinguish three ases.

Case 1: If � :: B; x : �; y : � ⊢ x : � with V = dom(B) ∪ {x; y}, there is an axiom

�

′ :: B; x : � ⊢ x[x=y] = x : �

suh that V

′ = dom(B) ∪ {x} = V \ {y} and T ′ = T .

Case 2: If � :: B; x : �; y : � ⊢ y : � with V = dom(B) ∪ {x; y}, there is an axiom

�

′ :: B; x : � ⊢ y[x=y] = x : �
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suh that V

′ = dom(B) ∪ {x} = V \ {y} and T ′ = T .

Case 3: If � :: B′
; z : �; x : �; y : � ⊢ z : � with V = dom(B′) ∪ {z; x; y}, there is an axiom

�

′ :: B′
; z : �; x : � ⊢ z[x=y] = z : �

suh that V

′ = dom(B′) ∪ {z; x} = V \ {y} and T ′ = T .

Indution step: We show two harateristi ases.

.

�0 :: B; x : �; y : � ⊢ t : � → � �1 :: B; x : �; y : � ⊢ u : �
(→E)

� :: B; x : �; y : � ⊢ tu : �

The IH yields a �

′
0 :: B; x : � ⊢ t[x=y] : � → �, suh that V

′
0 = V0 \ {y} and T

′
0 = T0, and also a

�

′
1 :: B; x : � ⊢ u[x=y] : � , suh that V

′
1 = V1 \ {y} and T ′

1 = T1. Applying (→E) to �
′
0 and �

′
1, we obtain

a �

′ :: B; x : � ⊢ (t[x=y])(u[x=y]) = (tu)[x=y] : �, suh that V

′ = V

′
0 ∪ V ′

1 = (V0 \ {y}) ∪ (V1 \ {y}) =
(V0 ∪ V1) \ {y} = V \ {y} and T ′ = T .

.

�0 :: B; x : �; y : � ⊢ t : � ∪ � �1 :: B; x : �; y : �; z : � ⊢ u : � �2 :: B; x : �; y : �; z : � ⊢ u : �
(∪E)

� :: B; x : �; y : � ⊢ u[t=z] : �

The IH gives derivations

�

′
0 :: B; x : � ⊢ t[x=y] : � ∪ �; �′

1 :: B; x : �; z : � ⊢ u[x=y] : �; and �′
2 :: B; x : �; z : � ⊢ u[x=y] : �

suh that V

′
i

= V

i

\ {y} and T

′
i

= T

i

(i = 0; 1; 2). By (∪E), we then get a

�

′ :: B; x : � ⊢ (u[x=y])[t[x=y]=z] = (u[t=z])[x=y] : �

suh that V

′ =
⋃

i

V

′
i

=
⋃

i

(V
i

\ {y}) = (
⋃

i

V

i

) \ {y} = V \ {y} and T ′ = T . ⊣

Remark 4.15 Contrary to IUL

m

, where ontration is derivable through an impliation redex, we annot

derive ontration in IUT

⊕
through an impliation redex.

� :: B; x : �; y : � ⊢ t : �
(→I)

B; x : � ⊢ �y: t : � → �

(ax)

B; x : � ⊢ x : �
(→E)

�

′ :: B; x : � ⊢ (�y: t)x : �

As shown above, suh an attempt provides a �

′
typing the redex (�y: t)x instead of the ontratum t[x=y]

and, as argued in Setion 2.1, the type system is not invariant under �-redution of subjets. On the other

hand, as already shown in Remark 2.2(ii), we an derive ontration in IUT

⊕
through a union redex.

The following proposition delares that the sets of free and bound variables of a term typable in IUT

⊕

are disjoint.

Proposition 4.16 If B ⊢ t : �, then dom(B) ∩BV (t) = ∅, Consequently, sine8 FV (t) ⊆ dom(B), it is
FV (t) ∩BV (t) = ∅.

8

See Remark 2.5.
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Proof. By indution on B ⊢ t : �.

Base: If B

′
; x : � ⊢ x : �, then (dom(B′) ∪ {x}) ∩BV (x) = (dom(B′) ∪ {x}) ∩ ∅ = ∅.

Indution step: We show the most notable ases.

.

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

We have that x 6∈ dom(B) and also, by the IH, that (dom(B)∪{x})∩BV (t) = ∅. Therefore, the sets
dom(B); {x}, and BV (t) are pairwise disjoint, whih implies that dom(B) ∩ (BV (t) ∪ {x}) = ∅, i.e. that
dom(B) ∩BV (�x: t) = ∅.

.

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

The IH gives that dom(B) ∩ BV (t) = ∅ and that dom(B) ∩ BV (u) = ∅. Therefore, we have that

dom(B) ∩ (BV (t) ∪BV (u)) = ∅, i.e. that dom(B) ∩BV (tu) = ∅.

.

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

B ⊢ u[t=x] : �

The IH gives that dom(B)∩BV (t) = ∅ and that (dom(B)∪{x})∩BV (u) = ∅. The latter implies that
dom(B)∩BV (u) = ∅. Therefore, it is dom(B) ∩ (BV (u)∪BV (t)) = ∅, i.e. dom(B)∩BV (u[t=x]) = ∅. ⊣

The next proposition onerns the top-down development of ertain variables in a derivation.

Proposition 4.17 Let � be a derivation in IUT

⊕
, R be a rule in �, and B1; : : : ; Bn be the bases in the

branh onneting the onlusion of R to the root of �.

(i) If R is (→I) and x is the variable bounded in the ourse of R, then x 6∈
⋃
n

i=1 dom(B
i

).
(ii) If R is (∪E) and x is the variable substituted in the ourse of R, then x 6∈

⋃
n

i=1 dom(B
i

).

Proof. We use indution on n for both (i) and (ii). We show (ii) below, noting that (i) is dealt with in

a similar manner.

Base: If n = 1, we have the following piture.

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
R = (∪E)

� :: B1 = B ⊢ u[t=x] : �

By the de�nition of \basis", we have that x 6∈ dom(B) = dom(B1).

Indution step: We suppose that x 6∈
⋃
n

i=1 dom(B
i

) and seek to show that x 6∈
⋃
n+1
i=1 dom(B

i

).
If a one-premise rule among (→I),(∩E), or (∪I) intervenes between B

n

and B

n+1 with Bn being the

basis of the premise, it is

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). If a two-premise rule among (→E) or (∩I)

intervenes between B

n

and B

n+1 with Bn being the basis of either the left or the right premise, it is one

again

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). In all these ases, the result follows from the IH.

We examine the ase of the three-premise (∪E) rule between B

n

and B

n+1 a bit more losely. If

a (∪E) intervenes between B

n

and B

n+1 with B

n

being the basis of the major premise, we have the

following piture.
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B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
R = (∪E)

B1 = B ⊢ u[t=x] : �

.

.

.

�0 :: B
n

⊢ t′ : � ∪  �1 :: B
n

; y : � ⊢ u′ : � �2 :: B
n

; y :  ⊢ u′ : �
(∪E)

� :: B
n+1 = B

n

⊢ u′[t′=y] : �

Sine B

n+1 = B

n

, we have that

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). Hene, the IH that x 6∈
⋃
n

i=1 dom(B
i

)
atually says that x 6∈

⋃
n+1
i=1 dom(B

i

). [We note that the IH entails that x 6∈ dom(B
n

), so that it may

be y = x.℄ If a (∪E) intervenes between B
n

and B

n+1 with B

n

being the basis of a minor premise, the

piture is reformed as follows.

�0 :: B′ ⊢ t′ : � ∪  

B ⊢ t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
R = (∪E)

B1 = B ⊢ u[t=x] : �

.

.

.

�1 :: B
n

= B

′ ∪ { y : � } ⊢ u′ : � �2 :: B′
; y :  ⊢ u′ : �

(∪E)
� :: B

n+1 = B

′ ⊢ u′[t′=y] : �

Sine B

n+1 = B

′ ( B

n

, we one more have that

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

), whih implies the

result. [We note that the IH entails that x 6∈ dom(B
n

) = dom(B′) ∪ {y}, so that y 6= x.℄ ⊣

4.3 Relating IUL

m

to IUT

⊕
in natural dedution

Having ompleted the presentation of both the logi IUL

m

and the type system IUT

⊕
in natural dedution

style, we desribe how the logi sets about aomplishing its de�nitional goal, whih is the depition of

the type system on a logial level. To do this, we need the de�nitions of non-standard deoration for

derivations in the logi and of term-statement for statements in the type system.

The so-alled \non-standard" deoration of the logi is a deoration that does not enode every logial

rule; it is atually ditated by the very rules of the type system

9

and hene enodes the impliation, ignores

the intersetion (introdution and elimination) and the union introdution, and indues a substitution in

the ase of union elimination. Its formal de�nition is along the line given in 3.15 and its rules are shown

in Figure 4.3.

De�nition 4.18 (Term-statement) Given a statement B = {x1 : �1; : : : ; xm : �
m

} ⊢ t : � in IUT

⊕
,

we de�ne the term-statement deriving from it to be {x1; : : : ; xm} ⊢ t, abbreviated x1; : : : ; xm ⊢ t.

To depit the type system IUT

⊕
on a logial level, we needed to de�ne a logi with impliation,

intersetion, and union, suh that it admits a deoration enoding the impliation, ignoring the interse-

tion (introdution and elimination) and the union introdution, and induing a substitution in the ase of

9

This is beause this deoration is in essene de�ned to ahieve a orrespondene between the logi and the type system

in the perspetive of a Curry-Howard orrespondene. This orrespondene is examined in detail in Chapter 5.
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(ax)

x : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [(Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t : [U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
p

(∩I)
t : [U ; (Γ

i

; �
i

∩ �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E1)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E2)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

(∪I1)
t : [U ; (Γ

i

; �
i

∪ �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

(∪I2)
t : [U ; (Γ

i

; �
i

∪ �
i

)
i

;V ]
p

t : [(Γ
i

; �
i

∪ �
i

)
i

]
p

u : [((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

]
p; x

(∪E)
u[t=x] : [(Γ

i

; �
i

)
i

]
p

Figure 4.3: Non-standard deoration of natural dedution IUL

m

.

union elimination. For suh a deoration to be feasible, the logi needed to have an (∩I) rule with a single

premise and a (∪E) rule with a single minor-premise

10

. Indeed, the logi IUL

m

, as de�ned in 4.1 and

deorated in 4.3, uses the moleule struture to join together statements in the type system that share

the same term-statement

11

. In the ase of intersetion introdution, the (deorated) logi merges into

the same (deorated) moleule the left and right IUT

⊕
-premises, in parallel for multiple rule instanes

that share the same term-statement

12

.

x1 : �1
1 ; : : : ; xm : �1

m

⊢ t : �1 x1 : �1
1 ; : : : ; xm : �1

m

⊢ t : �1
(∩I)1

x1 : �1
1 ; : : : ; xm : �1

m

⊢ t : �1 ∩ �1

.

.

.

x1 : �n1 ; : : : ; xm : �n
m

⊢ t : �
n

x1 : �n1 ; : : : ; xm : �n
m

⊢ t : �
n

(∩I)
n

x1 : �n1 ; : : : ; xm : �n
m

⊢ t : �
n

∩ �
n

❀

10

If the logi had an (∩I) with two premises, a deoration ignoring it would proeed only under the metatheoretial

ondition that the two premises are identially deorated. A similar remark holds for a (∪E) with two minor premises.

11

This should be kept in mind with a small asterisk, as in the following two hapters we establish that it is not every set

of (derivations proving) statements sharing the same term-statement that an be joined into a single (derivation proving

a) deorated moleule, whih atually renders IUL

m

inappropriate as a logi for IUT

⊕
(see Setion 6.3). It would be

more aurate at this point to say that we assume that, as in the ase of the intersetion moleule-logi with respet to

the intersetion type system, the intersetion-and-union moleule-logi IUL

m

uses the moleule struture to join together

statements in the intersetion-and-union type system IUT

⊕
that share the same term-statement.

12

Obviously, the term-statement of an (∩I) instane with premises B ⊢ t : �; B ⊢ t : � and onlusion B ⊢ t : � ∩ �, where
dom(B) = {x1; : : : ; xm}, is meant to be x1; : : : ; xm ⊢ t.
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t : [U ; (�1
1 ; : : : ; �

1
m

; �1); (�
1
1 ; : : : ; �

1
m

; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �
n

); (�n1 ; : : : ; �
n

m

; �
n

);V ]
x1;:::; xm

(∩I)
t : [U ; (�1

1 ; : : : ; �
1
m

; �1 ∩ �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �
n

∩ �
n

);V ]
x1;:::; xm

Likewise, in the ase of union elimination, the (deorated) logi merges into the same (deorated) moleule

the left and right minor IUT

⊕
-premises, in parallel for multiple rule instanes whose orresponding

statements share the same term-statement.

B1 ⊢ t : �1 ∪ �1 B1; x : �1 ⊢ u : �1 B1; x : �1 ⊢ u : �1
(∪E)1

B1 = { x1 : �1
1 ; : : : ; xm : �1

m

} ⊢ u[t=x] : �1

.

.

.

B

n

⊢ t : �
n

∪ �
n

B

n

; x : �
n

⊢ u : �
n

B

n

; x : �
n

⊢ u : �
n

(∪E)
n

B

n

= { x1 : �n1 ; : : : ; xm : �n
m

} ⊢ u[t=x] : �
n

❀

t : [(Γ1 ; �1 ∪ �1); : : : ; (Γn ; �n ∪ �n)]p u : [(Γ1; �1 ; �1); (Γ1; �1 ; �1); : : : ; (Γn; �n ; �n); (Γn; �n ; �n)]p; x
(∪E)

u[t=x] : [(Γ1 = �

1
1 ; : : : ; �

1
m

; �1); : : : ; (Γn = �

n

1 ; : : : ; �
n

m

; �
n

)]
p=x1;:::; xm

A similar note is given in Chapter 3 to explain how the (∪E) in IUL

m

, as IUL

m

is presented there,

uses the moleule struture to join together the isomorphi minor premises of the (∨E) in MLns (see p.

52).

Considering the logi and the type system as presented in this hapter, we (re)examine their or-

respondene in the following hapter. We there reonsider the handling of substitution terms, an issue

that bloked a omplete solution to the orrespondene problem bak in Chapter 3 (see subsetions 3.1.2

and 3.2.2).



CHAPTER 5

Correspondene between IUL

m

and IUT

⊕

We aim to ahieve a orrespondene between the natural dedution logi IUL

m

and the natural dedution

type system IUT

⊕
through the non-standard deoration of the logi, given in the previous hapter.

Toward this end, we �rst de�ne the notions \tree with terms" and \tree of impliations and union

eliminations with terms" for both the deorated logi and the type system. We then state and prove

theorems of orrespondene, whih strongly depend on restritions involving the latter notion. We �nally

examine if and to what extent we an get rid of these restritions.

5.1 Trees of iue with terms

To obtain some kind of orrespondene between the deorated logi IUL

?

m

and the type system IUT

⊕
,

we will need the auxiliary notion of tree of impliations and union eliminations with terms, de�ned for

both IUL

?

m

and IUT

⊕
. The de�nition of this notion is based on the de�nition of the notion of tree with

terms, for both systems.

De�nition 5.1 (IUL

?

m

: Tree with terms T

t

) (i) Given a deorated moleule t : M
p

in IUL

?

m

, we

de�ne the deoration-statement deriving from it to be the statement {p} ⊢ t with set-ontext {p }. We

may abbreviate the deoration-statement as p ⊢ t.
(ii) Given the tree T of a derivation �

?

in IUL

?

m

and the fat that eah node of the tree represents a

deorated moleule in �

?

, the tree with terms T

t

of �

?

is T with eah node deorated by the deoration-

statement deriving from the node's deorated moleule.

De�nition 5.2 (IUL

?

m

: Tree of implis and union elimins with terms T

t

iue

) We derive the tree

of impliations and union eliminations with terms T

t

iue

of a derivation �

?

in IUL

?

m

from the tree with

terms T

t

of �

?

by erasing all nodes and orresponding deoration-statements assoiated to the rules

(X),(∩IE), and (∪I).

Remark 5.3 The proedure of erasing nodes and orresponding deoration-statements assoiated to the

rules (X),(∩IE), and (∪I) is well-de�ned, sine these rules provide, when deorated, the same deoration-

statement in premise and onlusion. This fat also implies that the tree T

t

iue

displays at the root the

same deoration-statement as the tree T

t

.

Example 5.4 (IUL

?

m

: T

t

and T

t

iue

) If � = (�∪ �)∩ (�∪ ) and � = (�→ Æ ∩ ")∩ (� → Æ)∩ ( → "),
we onsider the IUL

?

m

-derivation �

? :: �y: yx : [(� ; (� → Æ ∩ ") ∪ �)]
x

, exhibited below, and present its

77
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⊕

trees T

t

and T

t

iue

. For spae eonomy, we denote �1 the type (�→ Æ ∩ ")∩ (� → Æ) and �?11 the deorated

axiom z : [(�; �; � ; �); (�; �; � ; �); (�; �; � ; �); (�; �;  ; )]
x; y; z

.

x : [(�; � ; �); (�; � ; �)]
y;x

(∩E1)

x : [(�; � ; � ∪ �); (�; � ; �)]
y;x

(∩E2)

x : [(�; � ; � ∪ �); (�; � ; � ∪ )]
y;x

(X)

�

?

0 :: x : [(�; � ; � ∪ �); (�; � ; � ∪ )]
x; y

see below

�

?

1 :: yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; "); (�; �;  ; ")]
x; y; z

(∪E)
yz[x=z] = yx : [(�; � ; Æ); (�; � ; ")]

x; y

(∩I)
yx : [(�; � ; Æ ∩ ")]

x; y

(→I)

�y: yx : [(� ; � → Æ ∩ ")]
x

(∪I)
�

? :: �y: yx : [(� ; (� → Æ ∩ ") ∪ �)]
x

y : [(�; �; � ; � ); (�; �; � ; � ); (�; �; � ; � ); (�; ; � ; � )]
x; z; y

(∩E1)

y : [(�; �; � ; �1); (�; �; � ; �1); (�; �; � ; �1); (�; ; � ; � )] x; z; y
(∩E1)

y : [(�; �; � ; �→ Æ ∩ "); (�; �; � ; �1); (�; �; � ; �→ Æ ∩ "); (�; ; � ; � )]
x; z; y

(∩E2)

y : [(�; �; � ; �→ Æ ∩ "); (�; �; � ; � → Æ); (�; �; � ; �→ Æ ∩ "); (�; ; � ;  → ")]
x; z; y

(X)

y : [(�; �; � ; �→ Æ ∩ "); (�; �; � ; � → Æ); (�; �; � ; �→ Æ ∩ "); (�; �;  ;  → ")]
x; y; z

axiom �

?

11
(→E)

yz : [(�; �; � ; Æ ∩ "); (�; �; � ; Æ); (�; �; � ; Æ ∩ "); (�; �;  ; ")]
x; y; z

(∩E1)

yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; Æ ∩ "); (�; �;  ; ")]
x; y; z

(∩E2)

�

?

1 :: yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; "); (�; �;  ; ")]
x; y; z

To failitate the layout, the trees T

t

and T

t

iue

of �

?

are displayed on the next page in Figure 5.1,

where S denotes the set {x; y} and S; z the set {x; y; z}.

We next de�ne the tree with terms of a derivation in IUT

⊕
and then provide an algorithm for

onstruting the tree of impliations and union eliminations with terms of suh a derivation, given its

tree with terms.

De�nition 5.5 (IUT

⊕
: Tree with terms T

t

) Given the tree T of a derivation � in IUT

⊕
and the

fat that eah node of the tree represents a statement in �, the tree with terms T

t

of � is T with eah

node deorated by the term-statement deriving from the node's statement.

De�nition 5.6 (IUT

⊕
: Tree of implis and union elimins with terms T

t

iue

) We derive the tree

of impliations and union eliminations with terms T

t

iue

of a derivation � in IUT

⊕
from the tree with

terms T

t

of � by the following algorithm.

. We hoose a topmost (∩I) or (∪E) in the tree with terms of �, i.e. an (∩I) or (∪E) that has no

other (∩I) or (∪E) above it. Then, we erase all nodes and orresponding term-statements assoiated to

(∩E) or (∪I) in the trees with terms of all premises. If the topmost rule-inferene hosen is an (∩I)

and the resulting premise trees of impliations with terms are idential, i.e. if they share the same rule

struture and the same term-statements at orresponding nodes, we identify them and erase the node and

orresponding term-statement assoiated to the (∩I). If the topmost rule-inferene hosen is a (∪E) and

the resulting minor-premise trees of impliations with terms are idential, we identify them and keep a

single minor-premise tree of impliations with terms, so that the node assoiated to the (∪E) beomes a

two-hildren node.
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9

S ⊢ x

•
∩E1

•S ⊢ x

∩E2

•S ⊢ x

X

•S ⊢ x

◗
◗
◗
◗
◗
◗◗•

∪E

S ⊢ yx ✑
✑

✑
✑
✑
✑✑

∩I

•S ⊢ yx

→I

•x ⊢ �y: yx

∪I

•

x ⊢ �y: yx

T

t

•

S; z ⊢ y

∩E1

•S; z ⊢ y

∩E1

•S; z ⊢ y

∩E2

•S; z ⊢ y

X

•S; z ⊢ y

◗
◗
◗◗•
→E

S; z ⊢ yz ✑
✑
✑✑

•

S; z ⊢ z

∩E1

•S; z ⊢ yz

∩E2

•S; z ⊢ yz

S ⊢ x

•
◗
◗
◗
◗
◗
◗◗•

∪E

S ⊢ yx ✑
✑
✑
✑
✑
✑✑

→I

•

x ⊢ �y: yx

T

t

iue

•

S; z ⊢ y

◗
◗
◗◗•

→E

S; z ⊢ yz ✑
✑
✑✑

•

S; z ⊢ z

Figure 5.1: The trees T

t

and T

t

iue

of �

?

in Example 5.4.
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. We iterate the above proedure for the tree with terms resulting from the previous step. At any

step n > 1, we ignore any two-hildren (∪E)'s, when hoosing the step's topmost (∩I) or (∪E), and the

trees with terms resulting from the premises of the topmost (∩I) or (∪E) hosen|after erasing nodes and

orresponding term-statements assoiated to (∩E) or (∪I)|are, in general, trees of impliations and

union eliminations with terms, not merely trees of impliations with terms, as they were at step 1.

. When all the (∩I)'s and (∪E)'s have been dealt with, we make a �nal step to erase any remaining

nodes and orresponding term-statements assoiated to (∩E) or (∪I).

Remark 5.7 Sine the rules (∩E) and (∪I) display the same term-statement in premise and onlusion,

a tree of impliations and union eliminations with terms attained from a topmost-(∩I) or a topmost-(∪E)

premise, after erasing nodes and orresponding term-statements assoiated to (∩E) or (∪I), is well-

de�ned and has a term-statement at the root whih is idential to the term-statement at the root of the

premise's tree with terms. Moreover, sine the (∩I) rule displays the same term-statement in premises

and onlusion, a tree of impliations and union eliminations with terms attained from a topmost-(∩I)

tree with terms, after identifying mathing premise trees of impliations and union eliminations with

terms and erasing the (∩I) node and its orresponding term-statement, has a term-statement at the root

whih is idential to the term-statement at the root of the topmost-(∩I) tree with terms in question. Given

a topmost-(∪E) tree with terms, there is obviously no alteration in the term-statement at the root, after

identifying mathing minor-premise trees of impliations and union eliminations with terms. The fat

that (∩E) and (∪I) display the same term-statement in premise and onlusion is one more used to argue

that a �nal algorithmi step onerning suh rule-inferenes does not alter the term-statement at the root

or anywhere else. So, in onlusion, the proedure desribed by the algorithm in 5.6 is well-de�ned and

the �nal tree T

t

iue

attained, if the algorithm terminates, has a term-statement at the root idential to the

term-statement at the root of the original tree T

t

.

Example 5.8 (IUT

⊕
: T

t

and T

t

iue

) If � = ( → �) ∩ ( → �) ∩  and � = (Æ → �) ∩ Æ, we onsider

the IUT

⊕
-derivation � :: ∅ ⊢ �x: xx (xx) : (� → � ∩ �) ∪ ", as shown below. We denote �1 the type

( → �) ∩ ( → �) and B the basis { x : �; y : � }. We then demonstrate the tree T

t

of � and the

proedure to attain the tree T

t

iue

of � from it in four steps. In trees, the letter S stands for the set {x; y},
while the topmost (∩I) or (∪E) hosen is enlosed in a box.

see below

�0 :: x : � ⊢ xx : � ∪ �

B ⊢ y : �
(∩E1)

B ⊢ y : �1
(∩E1)

B ⊢ y :  → �

B ⊢ y : �
(∩E2)

B ⊢ y : 
(→E)

B ⊢ yy : �

B ⊢ y : �
(∩E1)

B ⊢ y : �1
(∩E2)

B ⊢ y :  → �

B ⊢ y : �
(∩E2)

B ⊢ y : 
(→E)

B ⊢ yy : �
(∩I)

�1 :: B = {x : �; y : � } ⊢ yy : � ∩ � �1
(∪E)

x : � ⊢ yy[xx=y] = xx (xx) : � ∩ �
(→I)

∅ ⊢ �x: xx (xx) : � → � ∩ �
(∪I1)

� :: ∅ ⊢ �x: xx (xx) : (� → � ∩ �) ∪ "

x : � ⊢ x : �
(∩E1)

x : � ⊢ x : Æ → �

x : � ⊢ x : �
(∩E2)

x : � ⊢ x : Æ
(→E)

x : � ⊢ xx : �
(∪I)

�0 :: x : � ⊢ xx : � ∪ �
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1

x ⊢ x

•
∩E1

•x ⊢ x

◗
◗
◗◗•x ⊢ xx

→E

✑
✑
✑✑

•x ⊢ x

•

x ⊢ x

∩E2

∪I

•x ⊢ xx

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗◗•

∪E

x ⊢ xx (xx)
→I

•∅ ⊢ �x: xx (xx)
∪I1

•
∅ ⊢ �x: xx (xx)

T

t

S ⊢ y

•
∩E1

•S ⊢ y

∩E1

•S ⊢ y

◗
◗
◗◗•
→E

S ⊢ yy ✑
✑
✑✑

•S ⊢ y

•

S ⊢ y

∩E2

◗
◗
◗
◗
◗
◗
◗•

S ⊢ yy

(T t)1

∩I

✑
✑
✑
✑
✑
✑
✑

•

S ⊢ y

∩E1

•S ⊢ y

∩E2

•S ⊢ y

◗
◗
◗◗•S ⊢ yy

→E

✑
✑
✑✑

•S ⊢ y

•

S ⊢ y

∩E2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

✑
✑
✑
✑
✑✑

•

S ⊢ yy

(T t)1
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C
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.
C
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r
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d
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e
b
e
t
w
e
e
n
I
U
L

m

a
n
d
I
U
T

⊕

Step 1:

•

x ⊢ x

∩E1

•x ⊢ x

◗
◗
◗◗•x ⊢ xx

→E

✑
✑
✑✑

•x ⊢ x

•

x ⊢ x

∩E2

∪I

•x ⊢ xx

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗◗•

∪E

x ⊢ xx (xx)

→I

•∅ ⊢ �x: xx (xx)

∪I1

•
∅ ⊢ �x: xx (xx)

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑

•

S ⊢ y

◗
◗
◗◗•S ⊢ yy

→E

✑
✑
✑✑

•

S ⊢ y

•

S ⊢ y

∩E1

•S ⊢ y

∩E1

•S ⊢ y

◗
◗
◗◗•S ⊢ yy

→E

✑
✑
✑✑

•S ⊢ y

•

S ⊢ y

∩E2

◗
◗
◗
◗
◗
◗
◗•S ⊢ yy

∩I

✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•

S ⊢ y

∩E1

•S ⊢ y

∩E2

•S ⊢ y
◗
◗
◗◗✑

✑
✑✑

•

S ⊢ y

∩E2

•S ⊢ y
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Step 2:

•
x ⊢ x

∩E1

•x ⊢ x
◗
◗
◗◗•x ⊢ xx
→E

✑
✑
✑✑

•x ⊢ x

•
x ⊢ x

∩E2

∪I

•x ⊢ xx
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•x ⊢ xx (xx)

∪E

→I

•∅ ⊢ �x: xx (xx)
∪I1

•
∅ ⊢ �x: xx (xx)

•
S ⊢ y

◗
◗
◗◗•S ⊢ yy
→E

✑
✑
✑✑

•
S ⊢ y

✑
✑
✑

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ y

Step 3:

•
x ⊢ x

◗
◗
◗◗•x ⊢ xx
→E

✑
✑
✑✑

•
x ⊢ x

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•x ⊢ xx (xx)
∪E

→I

•∅ ⊢ �x: xx (xx)

∪I1

•
∅ ⊢ �x: xx (xx)

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ y
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Step 4:

•
x ⊢ x

◗
◗
◗◗•x ⊢ xx
→E

✑
✑
✑✑

•
x ⊢ x

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•x ⊢ xx (xx)
∪E

→I

•
∅ ⊢ �x: xx (xx)

T

t

iue

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S ⊢ yy

→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ y

The algorithm in 5.6 stops in ase the trees of impliations and union eliminations with terms attained

from the premises of a topmost (∩I) or from the minor premises of a topmost (∪E)|after erasing nodes

and orresponding term-statements assoiated to (∩E) or (∪I)|do not oinide. The next example puts

up an IUT

⊕
-derivation for whih the algorithm does not terminate.

Example 5.9 (IUT

⊕
: no T

t

iue

) If � = ( → �) ∩ ((Æ → �)∩ ("→ �)); � = (� → )∩ (� → Æ ∪ "), and
B = { x : �; y : �; z : � }, we onsider the IUT

⊕
-derivation � :: B ⊢ x (yz) : � ∩ �, as shown below. We

denote �2 the type (Æ → �) ∩ ("→ �).

see below

�0 :: B ⊢ x (yz) : �

see below

�1 :: B ⊢ x (yz) : �
(∩I)

� :: B ⊢ x (yz) : � ∩ �

B ⊢ x : �
(∩E1)

B ⊢ x :  → �

B ⊢ y : �
(∩E1)

B ⊢ y : � →  B ⊢ z : �
(→E)

B ⊢ yz : 
(→E)

�0 :: B ⊢ x (yz) : �

B ⊢ y : �
(∩E2)

B ⊢ y : � → Æ ∪ " B ⊢ z : �

B ⊢ yz : Æ ∪ " (→E)

B; w : Æ ⊢ x : �
(∩E2)

B; w : Æ ⊢ x : �2
(∩E1)

B; w : Æ ⊢ x : Æ → � B; w : Æ ⊢ w : Æ

B; w : Æ ⊢ xw : � (→E)

B; w : " ⊢ x : �
(∩E2)

B; w : " ⊢ x : �2
(∩E2)

B; w : " ⊢ x : "→ � B; w : " ⊢ w : "

B; w : " ⊢ xw : � (→E)

(∪E)
�1 :: B ⊢ x (yz) : �

The tree T

t

of � is displayed on the next page, where S denotes the set {x; y; z}. We then elaborate

on the steps of the algorithm in 5.6 in order to spot the problem in obtaining a tree T

t

iue

of �.
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5

•

S ⊢ x

∩E1

•S ⊢ x

◗
◗
◗
◗◗•S ⊢ x (yz)

→E

(T t)0

✑
✑
✑
✑✑

•S ⊢ yz

→E

•

S ⊢ y

∩E1

•S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•

S ⊢ z

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•

S ⊢ x (yz)

T

t

∩I

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•

∪E

S ⊢ x (yz)

(T t)1

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑

•

S ⊢ y

∩E2

•S ⊢ y

◗
◗
◗◗•S ⊢ yz

→E

✑
✑
✑✑

•

S ⊢ z

◗
◗
◗
◗
◗
◗

◗
◗
◗
◗
◗
◗
◗◗

•

S;w ⊢ x

∩E2

•S;w ⊢ x

∩E1

•S;w ⊢ x

◗
◗
◗◗•S;w ⊢ xw

→E

✑
✑
✑✑

•

S; w ⊢ w

•

S;w ⊢ x

∩E2

•S;w ⊢ x

∩E2

•S;w ⊢ x
◗
◗
◗◗•S;w ⊢ xw

→E

✑
✑
✑✑

•

S;w ⊢ w
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⊕

Step 1:

•
S ⊢ x

∩E1

•S ⊢ x
◗
◗
◗
◗◗•S ⊢ x (yz)

→E

(T t)0

✑
✑
✑
✑✑

•S ⊢ yz
→E

•
S ⊢ y

∩E1

•S ⊢ y
◗
◗
◗◗✑

✑
✑✑

•
S ⊢ z

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗◗•
S ⊢ x (yz)

∩I

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑✑
•S ⊢ x (yz)
∪E

(T t

iue

)1

•
S ⊢ y

◗
◗
◗◗•S ⊢ yz
→E

✑
✑
✑✑

•
S ⊢ z

◗
◗
◗
◗◗✑

✑
✑
✑✑

•S;w ⊢ xw
→E

•
S;w ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S;w ⊢ w

Step 2:

•
S ⊢ x

◗
◗
◗
◗◗•
S ⊢ x (yz)

→E

(T t

iue

)0

✑
✑
✑
✑✑

•S ⊢ yz
→E

•
S ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S ⊢ z

6=

•
S ⊢ y

◗
◗
◗◗•S ⊢ yz
→E

✑
✑
✑✑

•
S ⊢ z

◗
◗
◗
◗◗•
S ⊢ x (yz)

∪E

(T t

iue

)1

✑
✑
✑
✑✑

•S;w ⊢ xw
→E

•
S;w ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S;w ⊢ w

Step 2 annot be ompleted, as the trees of impliations and union eliminations with terms obtained from

the premises of (∩I) are not idential, i.e. it is (T t

iue

)0 6= (T t

iue

)1. Therefore, the algorithm stops and

there is no tree T

t

iue

of �.

5.2 Restrited orrespondene theorems

Having de�ned the notion \tree of impliations and union eliminations with terms" for both the deorated

logi and the type system, we an now use it to state and prove theorems of orrespondene between the

two systems. The inevitable restrition

1

whih the use of this notion

2

poses on the orrespondene fores

us to all these theorems \restrited orrespondene theorems".

1

The restrition is meant in omparison to the orrespondene ahieved in Chapter 1 between the deorated logi ISL

and the type system IT (see Theorem 1.20).

2

A detailed justi�ation of this notion's neessity in seuring the orrespondene is o�ered in Setion 5.4.
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Theorem 5.10 (From IUL

m

to IUT

⊕
) If �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a deorated deriva-

tion in IUL

m

, there are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
, suh that

1. (T t

iue

)
i

exists, 2. (T t

iue

)
i

= (T t

iue

)
j

(1 6 i 6= j 6 n), and 3. (T t

iue

)
i

= (T t

iue

)
�

?

.

Proof. We proeed by indution on �

?

, denoting S the set {x1; : : : ; xm}.

Base: If �

? :: x : [(�i1; : : : ; �
i

m

; �

i

; �
i

)n
i=1]x1;:::; xm; x is a deorated axiom, then there exist axioms

�

i

:: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ x : �
i

(1 6 i 6 n) in IUT

⊕
. The tree (T t

iue

)
i

is a single node with the

term-statement S; x ⊢ x, so that onlusions 1 and 2 hold. The tree (T t

iue

)
�

?

is a single node with the

deoration-statement S; x ⊢ x, so that onlusion 3 holds, too.

Indution step: We show the most demanding ases, abbreviating [h℄ the indution hypothesis.

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

; �
i

→ �

i

)n
i=1] x1;:::; xm �

?

1 :: u : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

(→E)

�

? :: tu : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

The [h℄ gives derivations �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

→ �

i

(1 6 i 6 n), suh that (T t

iue

)0i exists,
(T t

iue

)0i = (T t

iue

)0j , and (T t

iue

)0i = (T t

iue

)
�

?

0
. It also gives �1i :: x1 : �i1; : : : ; xm : �i

m

⊢ u : �
i

(1 6 i 6 n),
suh that (T t

iue

)1i exists, (T
t

iue

)1i = (T t

iue

)1j , and (T t

iue

)1i = (T t

iue

)
�

?

1
. Applying (→E) to �0i and �1i, we

obtain �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ tu : �
i

(1 6 i 6 n). Sine the trees (T t

iue

)0i and (T t

iue

)1i exist, the tree
(T t

iue

)
i

also exists, as shown below.

(T t

iue

)0i [h℄

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1i [h℄

Sine (T t

iue

)0i = (T t

iue

)0j and (T t

iue

)1i = (T t

iue

)1j , we get that (T
t

iue

)
i

= (T t

iue

)
j

, as displayed below.

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)0j

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
j

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1j

Finally, sine (T t

iue

)0i = (T t

iue

)
�

?

0
and (T t

iue

)1i = (T t

iue

)
�

?

1
, we obtain that (T t

iue

)
i

= (T t

iue

)
�

?

, as shown

below.
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⊕

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗

◗◗•
S ⊢ tu

(T t

iue

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)
�

?

0

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

iue

)
�

?

→E

✑
✑
✑

✑✑
•

S ⊢ u

(T t

iue

)
�

?

1

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; ((�

i

1; : : : ; �
i

m

; �
i

); (�i1; : : : ; �
i

m

; �
i

))n
i=k+1] x1;:::; xm

(∩I)

�

? :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; (�

i

1; : : : ; �
i

m

; �
i

∩ �
i

)n
i=k+1] x1;:::; xm

For 1 6 i 6 k, the [h℄ yields derivations �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t :  
i

, suh that the trees (T t

iue

)0i
exist and are idential and (T t

iue

)0i = (T t

iue

)
�

?

0
. It is �

i

= �0i, so the trees (T
t

iue

)
i

[= (T t

iue

)0i] exist and are

idential. Moreover, it is (T t

iue

)
i

= (T t

iue

)0i = (T t

iue

)
�

?

0
= (T t

iue

)
�

?

. For k + 1 6 i 6 n, the [h℄ gives

�0i0 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

and �0i1 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

suh that the trees (T t

iue

)0i0; (T
t

iue

)0i1 exist and are idential. Applying (∩I) to �0i0 and �0i1, we get

�

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

∩ �
i

. Sine (T t

iue

)0i0 = (T t

iue

)0i1, the tree (T t

iue

)
i

exists and is idential

to (T t

iue

)0i0. Hene, the trees (T t

iue

)
i

are idential. For 1 6 i 6 k and k + 1 6 j 6 n, the [h℄ yields

that (T t

iue

)0i = (T t

iue

)0j0, whih implies that (T t

iue

)
i

= (T t

iue

)
j

. Therefore, we altogether have that, for

1 6 i 6 n, the trees (T t

iue

)
i

exist and are idential. Consequently, the already established equality

(T t

iue

)
i

= (T t

iue

)
�

?

, where 1 6 i 6 k, also holds for 1 6 i 6 n.

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

; �
i

∪ �
i

)n
i=1]p �

?

1 :: u : [((�i1; : : : ; �
i

m

; �

i

; �
i

); (�i1; : : : ; �
i

m

; �

i

; �
i

))n
i=1]p; x

(∪E)

�

? :: u[t=x] : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]p= x1;:::; xm

The [h℄ gives derivations �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

∪ �
i

(1 6 i 6 n), suh that (T t

iue

)0i exists,
(T t

iue

)0i = (T t

iue

)0j , and (T t

iue

)0i = (T t

iue

)
�

?

0
. It also gives

�1i0 :: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ u : �
i

and �1i1 :: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ u : �
i

for 1 6 i 6 n, suh that (T t

iue

)1i0; (T
t

iue

)1i1 exist, (T
t

iue

)1j0 = (T t

iue

)1i0 = (T t

iue

)1i1, and (T t

iue

)1i0 = (T t

iue

)
�

?

1
.

Applying (∪E) to �0i; �1i0, and �1i1, we obtain �i :: x1 : �i1; : : : ; xm : �i
m

⊢ u[t=x] : �
i

(1 6 i 6 n). Sine
the tree (T t

iue

)0i exists and the trees (T t

iue

)1i0; (T
t

iue

)1i1 exist and are idential [(T t

iue

)1i0 = (T t

iue

)1i1 =
(T t

iue

)1i], the tree (T t

iue

)
i

also exists aording to the algorithm in 5.6.

(T t)0i

S ⊢ t
•
◗
◗
◗

◗◗•
S ⊢ u[t=x]

(T t)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t)1i0

•
S; x ⊢ u

(T t)1i1

✲
5.6

•
S ⊢ t

(T t

iue

)0i [h℄

◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1i [h℄
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Sine (T t

iue

)0i = (T t

iue

)0j and (T t

iue

)1i = (T t

iue

)1i0 = (T t

iue

)1j0 = (T t

iue

)1j , we get that (T
t

iue

)
i

= (T t

iue

)
j

, as

displayed below.

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)0j

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
j

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1j

Finally, sine (T t

iue

)0i = (T t

iue

)
�

?

0
and (T t

iue

)1i = (T t

iue

)1i0 = (T t

iue

)
�

?

1
, we obtain that (T t

iue

)
i

= (T t

iue

)
�

?

, as

shown below.

(T t

iue

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
i

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)1i

=
[h℄

(T t

iue

)
�

?

0

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ u[t=x]

(T t

iue

)
�

?

∪E

✑
✑
✑
✑✑

•
S; x ⊢ u

(T t

iue

)
�

?

1

The (→I) ase is similar to the (→E) ase, while the ases of (∩E) and (∪I) are similar to the (∩I)

ase. ⊣

Corollary 5.11 If �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm is a derivation in IUL

?

m

, there exists a derivation

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � in IUT

⊕
, suh that 1. (T t

iue

)1 exists and 2. (T t

iue

)1 = (T t

iue

)
�

?

.

Proof. By Theorem 5.10, for n = 1. ⊣

The next example illustrates the formalities in Theorem 5.10.

Example 5.12 We onsider �

? :: �y: yx : [(� ; � → Æ); (� ; � → ")]
x

, as displayed below, where �; �; �

?

0 ,

and �

?

1 are as in Example 5.4.

�

?

0 :: x : [(�; � ; � ∪ �); (�; � ; � ∪ )]
x; y

�

?

1 :: yz : [(�; �; � ; Æ); (�; �; � ; Æ); (�; �; � ; "); (�; �;  ; ")]
x; y; z

(∪E)
yx : [(�; � ; Æ); (�; � ; ")]

x; y

(→I)

�

? :: �y: yx : [(� ; � → Æ); (� ; � → ")]
x
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⊕

There are two derivations �1 :: x : � ⊢ �y: yx : � → Æ and �2 :: x : � ⊢ �y: yx : � → " in IUT

⊕
,

suh that the trees (T t

iue

)1 and (T t

iue

)2 both exist and are idential and also idential to the tree (T t

iue

)
�

?

.

Roughly speaking, we derive �1 and �2 from �

?

by traing the deorated \anestors" of the 1st and 2nd

deorated atoms in the onlusion of �

?

, respetively. We denote B the basis { x : �; y : � } and S the set

dom(B) = {x; y}.

B ⊢ x : �
(∩E1)

B ⊢ x : � ∪ �

B; z : � ⊢ y : �
(∩E1)

B; z : � ⊢ y : �1
(∩E1)

B; z : � ⊢ y : � → Æ ∩ " B; z : � ⊢ z : �
(→E)

B; z : � ⊢ yz : Æ ∩ "
(∩E1)

B; z : � ⊢ yz : Æ

B; z : � ⊢ y : �
(∩E1)

B; z : � ⊢ y : �1
(∩E2)

B; z : � ⊢ y : � → Æ B; z : � ⊢ z : �
(→E)

B; z : � ⊢ yz : Æ
(∪E)

B = {x : �; y : � } ⊢ yx : Æ
(→I)

�1 :: x : � ⊢ �y: yx : � → Æ

B ⊢ x : �
(∩E2)

B ⊢ x : � ∪ 

B; z : � ⊢ y : �
(∩E1)

B; z : � ⊢ y : �1
(∩E1)

B; z : � ⊢ y : � → Æ ∩ " B; z : � ⊢ z : �
(→E)

B; z : � ⊢ yz : Æ ∩ "
(∩E2)

B; z : � ⊢ yz : "

B; z :  ⊢ y : �
(∩E2)

B; z :  ⊢ y :  → " B; z :  ⊢ z : 
(→E)

B; z :  ⊢ yz : "
(∪E)

B = {x : �; y : � } ⊢ yx : "
(→I)

�2 :: x : � ⊢ �y: yx : � → "

S ⊢ x
•
◗
◗
◗
◗
◗
◗◗•S ⊢ yx

∪E

→I

•
x ⊢ �y: yx

(T t

iue

)1 = (T t

iue

)2 = (T t

iue

)
�

?

✑
✑
✑
✑
✑
✑✑

•S; z ⊢ yz
→E

•
S; z ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S; z ⊢ z

The inverse of 5.10 an now be phrased and proved as follows.

Theorem 5.13 (From IUT

⊕
to IUL

m

) If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are deriva-

tions in IUT

⊕
, suh that 1. (T t

iue

)
i

exists and 2. (T t

iue

)
i

= (T t

iue

)
j

(1 6 i 6= j 6 n), then there is a

deorated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

, suh that (T t

iue

)
�

? = (T t

iue

)
i

.

Proof. For the sake of simpliity, we onsider two derivations �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � and

�2 :: x1 : �1; : : : ; xm : �
m

⊢ t :  , and we proeed by indution on �1. Nonetheless, we still onsider that

the [h℄ an be applied to any �nite number of derivations. We denote S the set {x1; : : : ; xm}.
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Base: If �1 :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x : � is an axiom, then, sine (T t

iue

)2 = (T t

iue

)1, derivation
�2 may only ontain rule inferenes among (∩I),(∩E), and (∪I).

•
S; x ⊢ x

(T t

iue

)1 = (T t

iue

)2

�21 :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x : � . . . �2k :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x : �

.

.

.

(∩IE); (∪I) .

.

.

�2 :: x : �; x1 : �1; : : : ; xm : �
m

⊢ x :  

We ahieve a �

? :: x : [(�; �1; : : : ; �m ; �); (�; �1; : : : ; �m ;  )]
x; x1;:::; xm by merging �1; �21; : : : ; �2k into

an axiom of the (deorated) logi and then applying exhanges

3

and the logial (∩IE),(∪I) inferenes that

orrespond

4

to the (∩IE),(∪I) inferenes in �2.

x : [(�1; : : : ; �m; � ; � ); (�1; : : : ; �m; � ; �)
k

i=1
︸ ︷︷ ︸

]
x1;:::; xm; x

.

.

.

(X)'s

.

.

.

x : [(�; �1; : : : ; �m ; � ); (�; �1; : : : ; �m ; �)k
i=1

︸ ︷︷ ︸
]
x; x1;:::; xm

.

.

.

(∩IE),(∪I)

.

.

.

�

? :: x : [(�; �1; : : : ; �m ; � ); (�; �1; : : : ; �m ;  )]
x; x1;:::; xm

Sine �

?

does not ontain impliations or union eliminations, the tree (T t

iue

)
�

?

is a single node with the

deoration-statement S; x ⊢ x, i.e. it is (T t

iue

)
�

? = (T t

iue

)1.

3

The number of these exhanges is the least possible, as we hoose not to interfere with the 1-to-m order in axiom level.

4

It may be the ase that a number of inferenes of the same kind in the type-system level are translated as a single

inferene of this very kind in the logial level; e.g. a number of (∩E1)'s in �2 may render a single (∩E1) in �

?

. This is

beause the loal rules of the logi, i.e. (∩IE) and (∪I), are allowed to at on several atoms (or sequenes of atoms) in one

step.



92 Chapter 5. Correspondene between IUL

m

and IUT

⊕

Indution step: We show the most important ases.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �→ � �11 :: x1 : �1; : : : ; xm : �
m

⊢ u : �
(→E)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ tu : �

The tree (T t

iue

)1 with root-node aompanied by the term-statement S ⊢ tu derives by (→E) from

the trees (T t

iue

)10 and (T t

iue

)11 with root-nodes aompanied by S ⊢ t and S ⊢ u, respetively. Sine the
tree (T t

iue

)2 exists and is idential to the tree (T t

iue

)1, derivation �2 has the form shown below, where, for

1 6 i 6 k, the trees (T t

iue

)2i0; (T
t

iue

)2i1 all exist and it is (T t

iue

)2i0 = (T t

iue

)10 and (T t

iue

)2i1 = (T t

iue

)11.

�210 :: B2 ⊢ t : �1 →  1 �211 :: B2 ⊢ u : �1
(→E)

�21 :: B2 ⊢ tu :  1
. . .

�2k0 :: B2 ⊢ t : �
k

→  

k

�2k1 :: B2 ⊢ u : �
k

(→E)

�2k :: B2 ⊢ tu :  
k

.

.

.

(∩IE); (∪I) .

.

.

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ tu :  

The [h℄ on �10; �210; : : : ; �2k0 gives a

�

?

0 :: t : [(�1; : : : ; �m ; �→ �); (�1; : : : ; �m ; �
i

→  

i

)k
i=1]x1;:::; xm

suh that (T t

iue

)
�

?

0
= (T t

iue

)10. In addition, the [h℄ on �11; �211; : : : ; �2k1 gives a

�

?

1 :: u : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �
i

)k
i=1]x1;:::; xm

with (T t

iue

)
�

?

1
= (T t

iue

)11. We then derive a �

? :: tu : [(�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm as follows.

�

?

0 �

?

1
(→E)

tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  
i

)k
i=1

︸ ︷︷ ︸
]
x1;:::; xm

.

.

.

(∩IE),(∪I)

.

.

.

�

? :: tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  )]
x1;:::; xm

Sine (T t

iue

)
�

?

0
= (T t

iue

)10 and (T t

iue

)
�

?

1
= (T t

iue

)11, we infer that (T
t

iue

)
�

? = (T t

iue

)1.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : � �11 :: x1 : �1; : : : ; xm : �
m

⊢ t : �
(∩I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∩ �

Sine the tree (T t

iue

)1 exists, the trees (T t

iue

)10 and (T t

iue

)11 both exist and are idential, so that

(T t

iue

)1 = (T t

iue

)10 = (T t

iue

)11. Moreover, sine (T t

iue

)1 = (T t

iue

)2, we have that (T
t

iue

)10 = (T t

iue

)11 = (T t

iue

)2.
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We an therefore apply the [h℄ on �10; �11; �2 to get a

�

?

0 :: t : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm

suh that (T t

iue

)
�

?

0
= (T t

iue

)10. By (∩I), we then obtain a

�

? :: t : [(�1; : : : ; �m ; � ∩ �); (�1; : : : ; �m ;  )]
x1;:::; xm

suh that (T t

iue

)
�

? = (T t

iue

)
�

?

0
= (T t

iue

)10 = (T t

iue

)1.

.

�10 :: B1 ⊢ t : � ∪ � �110 :: B1; x : � ⊢ u : � �111 :: B1; x : � ⊢ u : �
(∪E)

�1 :: B1 = { x1 : �1; : : : ; xm : �
m

} ⊢ u[t=x] : �

The tree (T t

iue

)1 with root-node aompanied by the term-statement S ⊢ u[t=x] derives by (∪E) from
the trees (T t

iue

)10 and (T t

iue

)11, where (T t

iue

)11 = (T t

iue

)110 = (T t

iue

)111, with root-nodes aompanied by

S ⊢ t and S; x ⊢ u, respetively. The hypothesis that the tree (T t

iue

)2 exists and is idential to the tree

(T t

iue

)1 implies the following. Derivation �2 has the form depited below, where, for 1 6 i 6 k, it is

�2i0 :: B2 ⊢ t : �
i0 ∪ �

i1; �2i10 :: B2; x : �
i0 ⊢ u :  

i

, and �2i11 :: B2; x : �
i1 ⊢ u :  

i

. The trees

(T t

iue

)2i0; (T
t

iue

)2i10; (T
t

iue

)2i11 all exist and it is (T t

iue

)2i10 = (T t

iue

)2i11 [= (T t

iue

)2i1]; (T t

iue

)2i0 = (T t

iue

)10,
and (T t

iue

)2i1 = (T t

iue

)11.

�210 �2110 �2111
(∪E)

�21 :: B2 ⊢ u[t=x] :  1
. . .

�2k0 �2k10 �2k11
(∪E)

�2k :: B2 ⊢ u[t=x] :  
k

.

.

.

(∩IE); (∪I) .

.

.

�2 :: B2 = { x1 : �1; : : : ; xm : �
m

} ⊢ u[t=x] :  

If Γ = �1; : : : ; �m and ∆ = �1; : : : ; �m, the [h℄ on �10; �210; : : : ; �2k0 gives a

�

?

0 :: t : [(Γ ; � ∪ �); (∆ ; �
i0 ∪ �i1)

k

i=1]x1;:::; xm

suh that (T t

iue

)
�

?

0
= (T t

iue

)10, while the [h℄ on �110; �111; �2110; �2111; : : : ; �2k10; �2k11 gives a

�

?

1 :: u : [(Γ; � ; �); (Γ; � ; �); ((∆; �
i0 ;  i); (∆; �i1 ;  i))

k

i=1]x1;:::; xm; x

suh that (T t

iue

)
�

?

1
= (T t

iue

)11. We then derive a �

? :: u[t=x] : [(Γ ; �); (∆ ;  )]
x1;:::; xm as follows.

�

?

0 �

?

1
(∪E)

u[t=x] : [(Γ ; �); (∆ ;  
i

)k
i=1

︸ ︷︷ ︸
]
x1;:::; xm

.

.

.

(∩IE),(∪I)

.

.

.

�

? :: u[t=x] : [(Γ ; �); (∆ ;  )]
x1;:::; xm
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⊕

The identities (T t

iue

)
�

?

0
= (T t

iue

)10 and (T t

iue

)
�

?

1
= (T t

iue

)11 imply that (T t

iue

)
�

? = (T t

iue

)1. ⊣

Corollary 5.14 If �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � is a derivation in IUT

⊕
, suh that (T t

iue

)1 exists,

there is a deorated derivation �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm in IUL

m

, suh that (T t

iue

)
�

? = (T t

iue

)1.

Proof. By Theorem 5.13, for n = 1. ⊣

Remark 5.15 (i) A more aurate phrasing of Theorem 5.13 would be the following.

If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations in IUT

⊕
, s.t. 1. (T t

iue

)
i

exists

and 2. (T t

iue

)
i

= (T t

iue

)
j

(1 6 i 6= j 6 n), then, for every bijetion b : {1; : : : ;m} → {1; : : : ;m},
there is a deorated derivation �

? :: t : [(�i
b(1); : : : ; �

i

b(m) ; �i)
n

i=1]x
b(1);:::; xb(m)

in IUL

m

with

(T t

iue

)
�

? = (T t

iue

)
i

.

In 5.13 we onsider the identity bijetion for simpliity.

(ii) In the base ase of the indutive proof of 5.13, we present the axiom �1 somewhat awkwardly as

x : �; B ⊢ x : � , where B = { x1 : �1; : : : ; xm : �
m

}, in order to demonstrate that there might be need for

some exhange inferenes in �

?

. Had we hosen the usual presentation

5

B; x : � ⊢ x : � , this fat would
not have been illustrated. The need for exhanges beomes expliit in Example 5.16 right below.

The next example is a onrete instane of the (∪E) ase displayed in the proof of 5.13.

Example 5.16 If � = (� → ) ∪ (� → ); � = (� → �1 ∩ �2) ∪ (� → �1 ∩ �2), where �1 = Æ ∩ " and

�2 = � ∩ �, and � = (" ∩ �) ∪ �, we onsider the IUT

⊕
-derivations �1 :: B = { x : �; y : � ∩ � } ⊢ xy : 

and �2 :: B′ = { y : � ∩ �; x : � } ⊢ xy : �, as shown below.

B ⊢ x : �

B; z : � →  ⊢ z : � → 

B; z : � →  ⊢ y : � ∩ �
(∩E1)

B; z : � →  ⊢ y : �
(→E)

B; z : � →  ⊢ zy : 

B; z : � →  ⊢ z : � → 

B; z : � →  ⊢ y : � ∩ �
(∩E2)

B; z : � →  ⊢ y : �
(→E)

B; z : � →  ⊢ zy : 
(∪E)

�1 :: B = {x : �; y : � ∩ � } ⊢ xy : 

see �2i (i = 1; 2) below

�21 :: B′ ⊢ xy : �1
(∩E2)

B

′ ⊢ xy : "

see �2i (i = 1; 2) below

�22 :: B′ ⊢ xy : �2
(∩E2)

B

′ ⊢ xy : �
(∩I)

B

′ ⊢ xy : " ∩ �
(∪I1)

�2 :: B′ = { y : � ∩ �; x : � } ⊢ xy : �

B

′ ⊢ x : �

B

′
1 ⊢ z : �→ �1 ∩ �2

B

′
1 ⊢ y : � ∩ �

(∩E1)

B

′
1 ⊢ y : �

(→E)

B

′
1 ⊢ zy : �1 ∩ �2

(∩E
i

)

B

′
1 = B

′ ∪ { z : �→ �1 ∩ �2 } ⊢ zy : �
i

B

′
2 ⊢ z : � → �1 ∩ �2

B

′
2 ⊢ y : � ∩ �

(∩E2)

B

′
2 ⊢ y : �

(→E)

B

′
2 ⊢ zy : �1 ∩ �2

(∩E
i

)

B

′
2 = B

′ ∪ { z : � → �1 ∩ �2 } ⊢ zy : �
i

(∪E)
�2i :: B

′ = { y : � ∩ �; x : � } ⊢ xy : �
i

5

There is no atual di�erene between the two presentations, as bases are sets, but 5.13 taitly presumes an order in

bases, the same in all n of them, whih is the order aimed at in (the onlusion of) �

?

.
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We attain the tree (T t

iue

)1 from the tree (T t)1 in one step, whih is ahieved by the fat that (T t

iue

)110 =
(T t

iue

)111 [= (T t

iue

)11]. We then attain the (T t

iue

)2 from the tree (T t)2 in four steps: the 1st and 2nd steps

are aomplished by the tree-identity (T t

iue

)2i10 = (T t

iue

)2i11 [= (T t

iue

)2i1] for i = 1 and i = 2, respetively,
while the 3rd step is aomplished by the tree-identities (T t

iue

)210 = (T t

iue

)220 [= (T t

iue

)2i0] and (T t

iue

)211 =
(T t

iue

)221 [= (T t

iue

)2i1]. Finally, we see that (T t

iue

)1 = (T t

iue

)2 from the fats that (T t

iue

)10 = (T t

iue

)2i0 and

(T t

iue

)11 = (T t

iue

)2i1. In the trees below, the letter S denotes the set {x; y}.

(T t

iue

)11 = (T t

iue

)2i1

(T t

iue

)211 = (T t

iue

)221

(T t

iue

)2i10 = (T t

iue

)2i11

(T t

iue

)110 = (T t

iue

)111

S; z ⊢ zy

•

S; z ⊢ z
•
◗
◗
◗◗
→E

✑
✑
✑✑

•
S; z ⊢ y

(T t

iue

)10 = (T t

iue

)2i0

(T t

iue

)210 = (T t

iue

)220

S ⊢ x

•
S ⊢ x
•
◗
◗
◗
◗
◗
◗◗•
S ⊢ xy

(T t

iue

)1 = (T t

iue

)2

∪E

✑
✑
✑
✑
✑
✑✑

•S; z ⊢ zy
→E

•
S; z ⊢ z

◗
◗
◗◗✑

✑
✑✑

•
S; z ⊢ y

Derivations �1 and �2 satisfy the hypotheses of 5.13; so, for x = x1 and y = x2, there is a deorated

derivation �

? :: xy : [(�; � ∩ � ; ); (�; � ∩ � ; �)]
x; y

with (T t

iue

)
�

? = (T t

iue

)1. If Γ = �; � ∩ � and

∆ = �; �∩ �, we write Γ
�

= Γ; �→ ; Γ
�

= Γ; � → ; ∆
�

= ∆; �→ �1 ∩ �2, and ∆
�

= ∆; � → �1 ∩ �2.

x : [(� ∩ �; � ; �); 2(� ∩ �; � ; � )]
y;x

(X)

x : [(Γ ; �); 2(∆ ; � )]
x; y

�

?

10 (see below) �

?

11 (see below)

(→E)

zy : [(Γ
�

; ); (Γ
�

; ); 2((∆
�

; �1 ∩ �2); (∆
�

; �1 ∩ �2))] x; y; z
(∩E1;2)

zy : [(Γ
�

; ); (Γ
�

; ); ((∆
�

; �
i

); (∆
�

; �
i

))2
i=1] x; y; z

(∪E)
xy : [(Γ ; ); (∆ ; �1); (∆ ; �2)] x; y

(∩E2)

xy : [(Γ ; ); (∆ ; "); (∆ ; �)]
x; y

(∩I)
xy : [(Γ ; ); (∆ ; " ∩ �)]

x; y

(∪I1)
�

? :: xy : [(Γ ; ); (∆ ; �)]
x; y

�

?

10 :: z : [(Γ
�

; �→ ); (Γ
�

; � → ); 2((∆
�

; �→ �1 ∩ �2); (∆
�

; � → �1 ∩ �2))] x; y; z

y : [(�; � → ; � ∩ � ; � ∩ �); (�; � → ;� ∩ � ; � ∩ �); 2((�;� → �1 ∩ �2; � ∩ � ; � ∩ �); (�; � → �1 ∩ �2; � ∩ � ; � ∩ �))]
x; z; y

(X)

y : [(Γ
�

; � ∩ �); (Γ
�

; � ∩ �); 2((∆
�

; � ∩ �); (∆
�

; � ∩ �))]
x; y; z

(∩E1;2)

�

?

11 :: y : [(Γ
�

; �); (Γ
�

; �); 2((∆
�

; �); (∆
�

; �))]
x; y; z

Two exhange inferenes, just below two axioms, are neessary in �

?

. If we hose to name y = x1 and

x = x2, we would get a �

? :: xy : [(� ∩ �; � ; ); (� ∩ �; � ; �)]
y; x

. This is atually in aordane with

Remark 5.15(i). In this ase, we would also need two exhange inferenes, but both (onseutively) below

the same axiom. For the �

?

shown above, it is easy to verify that the tree (T t

iue

)
�

?

is idential to the tree

(T t

iue

)1.
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⊕

The question that now arises is the following. Can a �nite number of IUT

⊕
-derivations that share

the same term-statement at the root, but are suh that the onjuntion of hypotheses 1 and 2 in 5.13

fails, be transformed to derivations that prove the same statements and are suh that 1 and 2 both hold?

To simplify the situation, let us onsider two IUT

⊕
-derivations �1 :: B1 = { x1 : �1; : : : ; xm : �

m

} ⊢ t : �
and �2 :: B2 = { x1 : �1; : : : ; xm : �

m

} ⊢ t :  that share the term-statement {x1; : : : ; xm} ⊢ t at the root
and are suh that the onjuntion of 1 and 2 fails [notation: ¬(1∧ 2)

�1;�2 ℄, i.e. it is not the ase that the

trees (T t

iue

)1 and (T t

iue

)2 both exist and are idential. Can we �nd transformed derivations �

′
1 :: B1 ⊢ t : �

and �

′
2 :: B2 ⊢ t :  for whih 1 and 2 hold [notation: (1 ∧ 2)

�

′
1;�

′
2
℄, i.e. for whih the trees (T t

iue

)′1 and

(T t

iue

)′2 both exist and are idential? As the next setion illustrates, this is not always possible.

5.3 A transformation ounterexample

Consider the following �-terms.

u

′ = xx1 v

′ = x1x

u

′′ = x2yy v

′′ = y (x2x1)

u = x2x1x1 v = x1(x2x1)

If s = x2x1 and r = x1, it is u = u

′[s=x] = u

′′[r=y] and v = v

′[s=x] = v

′′[r=y]. Moreover, if s

′ = x2y, the

following �-term relations hold.

u

′ = xr v

′ = rx

u

′′ = s

′
y v

′′ = ys

u = sr v = rs

If � = (� →  → �) ∩ Æ; � = (" → � → �) ∩ �, and � = (Æ → ) ∩ (� → �) ∩ � ∩ ", onsider the
IUT

⊕
-derivation �1 :: B1 = { x1 : �; x2 : � → � ∪ � } ⊢ uv : � and its tree (T t

iue

)1, as shown below. The

letter S denotes the set {x1; x2}.

B1 ⊢ x2 : � → � ∪ �

B1 ⊢ x1 : �
(∩E)

B1 ⊢ x1 : �
(→E)

�10 :: B1 ⊢ x2x1 = s : � ∪ �

see below

�11 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �

see below

�12 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �
(∪E)

�1 :: B1 ⊢ sr (rs) = uv : �

B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : � →  → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : �
(→E)

�110 :: B1; x : � ⊢ xx1 :  → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : Æ → 

B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : Æ
(→E)

�111 :: B1; x : � ⊢ x1x : 
(→E)

�11 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �

B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : "→ � → �

B1; x : � ⊢ x1 : �
(∩E2)

B1; x : � ⊢ x1 : "
(→E)

�120 :: B1; x : � ⊢ xx1 : � → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : � → �

B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : �
(→E)

�121 :: B1; x : � ⊢ x1x : �
(→E)

�12 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �
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S ⊢ x2

•
◗
◗
◗◗•S ⊢ s
→E

✑
✑
✑✑

•
S ⊢ x1

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)1

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•

→E

S; x ⊢ u′
v

′

•S; x ⊢ u′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•S; x ⊢ v′

→E

•
S; x ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x1

•
S; x ⊢ x1

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x

If � = � → �;  = � → ; � = (�∪ )∩ ", and � = (� → �→ � → �)∩ ( →  →  → �)∩ ("→ �),
onsider the IUT

⊕
-derivation �2 :: B2 = { x1 : �; x2 : � } ⊢ uv : � and its tree (T t

iue

)2, as demonstrated
below. For spae eonomy, we denote B

�

and B

 

the bases B2; y : � and B2; y :  , respetively.

B2 ⊢ x1 = r : �
(∩E)

�20 :: B2 ⊢ r : � ∪  

see below

�21 :: B2; y : � ⊢ x2yy (ys) = u

′′
v

′′ : �

see below

�22 :: B2; y :  ⊢ x2yy (ys) = u

′′
v

′′ : �
(∪E)

�2 :: B2 ⊢ sr (rs) = uv : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : �→ � → � → � B

�

⊢ y : �
(→E)

B

�

⊢ x2y : �→ � → � B

�

⊢ y : �
(→E)

�210 :: B2; y : � ⊢ x2yy : � → �

B

�

⊢ y : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : "→ �

B

�

⊢ x1 : �
(∩E)

B

�

⊢ x1 : "
(→E)

B

�

⊢ x2x1 = s : �
(→E)

�211 :: B2; y : � ⊢ ys : �
(→E)

�21 :: B2; y : � ⊢ x2yy (ys) = u

′′
v

′′ : �

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 :  →  →  → � B

 

⊢ y :  
(→E)

B

 

⊢ x2y :  →  → � B

 

⊢ y :  
(→E)

�220 :: B2; y :  ⊢ x2yy :  → �

B

 

⊢ y :  

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 : "→ �

B

 

⊢ x1 : �
(∩E)

B

 

⊢ x1 : "
(→E)

B

 

⊢ x2x1 = s : �
(→E)

�221 :: B2; y :  ⊢ ys : 
(→E)

�22 :: B2; y :  ⊢ x2yy (ys) = u

′′
v

′′ : �
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S ⊢ r
•
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗

◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S; y ⊢ u′′

v

′′

→E

•S; y ⊢ u′′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•

→E

S; y ⊢ v′′

•S; y ⊢ s′
→E

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ y

◗
◗
◗◗✑

✑
✑✑

•S; y ⊢ s
→E

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ x1

It is obvious that (T t

iue

)1 6= (T t

iue

)2, so that ¬(1 ∧ 2)
�1;�2 . Before attempting to transform �1 and �2

to �

′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : �, respetively, so that (1∧ 2)

�

′
1;�

′
2
, some preliminary notes are in

order.

Note 1. The omplexity (t) of a �-term t is de�ned indutively as follows.

(x) = 1 (�x: t) = (t) + 1 (tu) = (t) + (u)

We write 6


(<


;=


) to mean 6 (<;=) with respet to omplexity. Obviously, for any term t, it is

t >


1, and, for any non-variable term t, it is t >



1. The next lemma states term-omplexity relations

and properties we will be using later on.

Lemma 5.17 For any terms t; u; v, and any variable x free in u, we have that: (i) t <



tu and u <



tu,

(ii) if t <



u, then tv <



uv and vt <



vu, and (iii) if x <



t, then u = u(x) <


u(t) = u[t=x].

Proof. (i) It is tu =


t+ u >


t+ 1 >


t and tu =


t+ u >


1 + u >



u.

(ii) It is tv =


t+ v

[t<


u]
<



u+ v =


uv and vt =


v + t

[t<


u]
<



v + u =


vu.

(iii) By indution on u(x). Base: If u(x) = x, then u(t) = t, so that u(x) <


u(t) by hypothesis.

Indution step: If u(x) = (�y: u1)(x) = �y: u1(x), then u1(x)
[h℄

<



u1(t), so that u(x) = �y: u1(x) =


u1(x) + 1 <


u1(t) + 1 =


�y: u1(t) = u(t). If u(x) = (u1u2)(x), then x is free in u1 or free in u2, so we

need to onsider three ases: a) x free in u1, but not free in u2, b) x free in u2, but not free in u1, and

) x free in both u1 and u2. For ase a), it is u(x) = (u1(x))u2, so that u1(x)
[h℄

<



u1(t), whih implies that
u(x) = (u1(x))u2 < (u1(t))u2 = u(t) by (ii). The other two ases are dealt with in a similar manner. ⊣
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Note 2. In the attempted transformations, we only onsider (∪E)'s where a proper substitution ours,

as a (∪E) where a phony substitution ours is eliminable.

�0 :: B ⊢ t : � ∪ � �1 :: B; x : � ⊢ u : � �2 :: B; x : � ⊢ u : �
(∪E)

proper

[x ∈ FV (u)]
� :: B ⊢ u[t=x] 6= u : �

�0 :: B ⊢ t : � ∪ � �1 :: B; x : � ⊢ u : � �2 :: B; x : � ⊢ u : �
(∪E)

phony

[x 6∈ FV (u)]
� :: B ⊢ u[t=x] = u : �

Considering �1 :: B; x : � ⊢ u : � in (∪E)
phony

and using Proposition 4.14(iii), we get that there exists a

�

′
1 :: B ⊢ u : � with x 6∈ V

′
1  V1 and h

′
1 6 h1. Atually, as an be determined from the proof of 4.14(iii),

derivation �

′
1 derives from �1 by eliminating some (possibly none) rules in �1. Therefore, the set of rules

proving B ⊢ u : � in �

′
1 is a subset of the set of rules in �1, whih implies that we an prove B ⊢ u : �

without the phony (∪E) in question.

It an further be shown that, if the transformed derivations �

′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : � we

are looking for ontain phony (∪E)'s, then, eliminating the phony (∪E)'s from �

′
1 and �

′
2 and obtaining

�

′′
1 :: B1 ⊢ uv : � and �

′′
2 :: B2 ⊢ uv : �, respetively, we still have that (1 ∧ 2)

�

′′
1
;�

′′
2
. Hene, if there are

transformed �

′
1 and �

′
2 with (1 ∧ 2)

�

′
1
;�

′
2
, whih inlude phony (∪E)'s, then there are also transformed

�

′′
1 and �

′′
2 with (1 ∧ 2)

�

′′
1 ;�

′′
2
, whih exlude phony (∪E)'s. Consequently, if there are not transformed

�

′′
1 and �

′′
2 with (1 ∧ 2)

�

′′
1
;�

′′
2
, whih exlude phony (∪E)'s, then there are not transformed �

′
1 and �

′
2

with (1 ∧ 2)
�

′
1;�

′
2
, whih inlude phony (∪E)'s. In other words, inluding phony (∪E)'s would not alter a

negative outome in the searh for transformations.

In the following notes, unless otherwise indiated, we onsider an arbitrary term uv built from variables

by appliations.

Note 3. A derivation that proves a statement typing uv and that ontains only proper

6

(∪E)'s annot

ontain an (→I). Sine all the rules, exept phony (∪E)'s, arry a �-abstration from premise-level to

onlusion, if the derivation ontained an (→I), then the �-abstration formed by it would have to appear

in uv, whih is a ontradition.

B ⊢ �y: t : � ∪ � B; x : � ⊢ u(x) : � B; x : � ⊢ u(x) : �
(∪E)

proper

B ⊢ u(�y: t) : �

B ⊢ �y: t : � ∪ � B; x : � ⊢ u : � B; x : � ⊢ u : �
(∪E)

phony

B ⊢ u : �

Hene, we will be trying to onstrut derivations �

′
1 and �

′
2 that ontain only (→E)'s and proper (∪E)'s,

as far as rules reorded in a tree T

t

iue

are onerned.

Note 4. Supposing that the �rst bottom-up rule-inferene among inferenes of (→E) and of proper

(∪E) in a derivation proving B ⊢ uv : �, where B is an appropriate

7

ontext and � is a type variable, is

an (→E), then this (→E) is the �rst bottom-up rule-inferene at all in a derivation proving B ⊢ uv : !,

6

We mean that all the (∪E)'s that appear in it are proper. It may, of ourse, ontain other rules besides (∪E)'s.
7

The ontext B is \appropriate" in the sense that its domain ontains the free variables of uv.
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where

8

! is either � or an intersetion type with a fator

9

�. The type ! annot be an impliation type,

e.g. of the form !

′ → �, beause then an (→E), lying below the lowest (→E) in B ⊢ uv : �, would be

required to \extrat" � from !. The type ! an neither be a union type, e.g. of the form (!′∩�)∪(�∩!′′),
beause then a proper (∪E), lying below the lowest proper (∪E) in B ⊢ uv : �, would be required to

eliminate the union and deliver � at the root. If ! 6= �, we need only onsider (∩E)'s in between the

(→E) in question and the root B ⊢ uv : �. This is beause � is a type variable, so rules like (∩I) or (∪I),

whih inrease a type's omplexity, are not appropriate

10

.

B ⊢ u : !1 → ! B ⊢ v : !1
(→E)

B ⊢ uv : !
(∩E)

B ⊢ uv : �

Supposing that the �rst bottom-up rule-inferene among inferenes of (→E) and of proper (∪E) in a

derivation proving B ⊢ uv : �, where B is an appropriate ontext and � is a type variable, is a proper

(∪E), then this proper (∪E) an be onsidered as the �rst bottom-up rule-inferene at all in B ⊢ uv : �.
The �rst step is to argue, as in the ase of an (→E) above, that this proper (∪E) is the �rst bottom-up

rule-inferene at all in a derivation proving B ⊢ uv : !, where ! is either � or an intersetion type with a

fator �. However, in this ase, any (∩E) in between the proper (∪E) in question and the root B ⊢ uv : �
an be shifted above the proper (∪E) in question.

B ⊢ t : !1 ∪ !2 B; x : !1 ⊢ s(x) : ! B; x : !2 ⊢ s(x) : !
(∪E)

B ⊢ uv = s(t) : !
(∩E)

B ⊢ uv = s(t) : �

❀

B ⊢ t : !1 ∪ !2

B; x : !1 ⊢ s(x) : !
(∩E)

B; x : !1 ⊢ s(x) : �

B; x : !2 ⊢ s(x) : !
(∩E)

B; x : !2 ⊢ s(x) : �
(∪E)

B ⊢ uv = s(t) : �

Note 5. Examining bottom-up whether uv is typable in an appropriate ontext B = { : : : ; x
i

: �
i

; : : : }
by some type

11

!, i.e. examining whether bottom-up ompletion of a potential typing B ⊢ uv : ! is

possible, not all the rules from the set {(→E), (∪E)
proper

, (∩I), (∩E), (∪I)} have the same status, when

onsidered at the �rst bottom-up position. The essene of bottom-up ompletion of a potential typing

B ⊢ uv : ! lies in the deomposition of uv to terms of smaller omplexity in suedents higher up, so

that we eventually reah variables in the suedents of axioms, and also in the deomposition of union

8

The letter ! here bears no onnetion to the type onstant ! of Chapter 2.

9

Saying that ! is an intersetion type with a fator �, we roughly mean that ! has the form f1 ∩ f2, where f1 and f2 are

the fators of the intersetion and (f1 = � or f2 = �). The word \roughly" implies the fat that a fator of an intersetion

type may itself be an intersetion type with fators whih are intersetion types and so forth. That is to say, the intersetion

� ∩ f2 (or f1 ∩ �), mentioned above, may be nested into a \bigger" intersetion type.

10

If there was a (∩I) in between the (→E) and the root, it would have to be followed by an (∩E), so it would be eliminable.

On the other hand, there ouldn't be a (∪I) in between the (→E) and the root, as it would have to be followed by a proper

(∪E), whih would lie below the lowest proper (∪E).
11

The type ! may be either a spei� type, e.g. a ertain type variable �, or a type whih is loosely spei�ed by a ertain

desription, e.g. an intersetion type with a fator � or an impliation type, or just an arbitrary type.
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types assigned to variables in B to their omponents

12

in ontexts higher up and the deomposition of

intersetion types in uv : ! to their fators in suedents higher up. There are two ategories of rules from

the above set; one with rules that meaningfully ontribute to the bottom-up ompletion of a potential

typing of a term uv and another one with rules that just shift a potential typing of a term uv (or a version

of it that is harder to bottom-up omplete) upward. Before elaborating on the two ategories of rules, let

us �rst de�ne four ategories of proper (∪E). Distinguishing between the various kinds of proper (∪E) is

neessary in order to distinguish the two ategories of rules.

A ategory-1 proper (∪E) is one whose major premise types a proper, non-variable subterm t of uv,

denoted (∪E)[1; t]. A ategory-2 proper (∪E) is one whose major premise assigns to a variable subterm

x

i

of uv a union type !1 ∪ !2, suh that �

i

= !1 ∪ !2 or �

i

is an intersetion type with a fator

!1 ∪ !2; we denote it (∪E)[2; xi]. A ategory-3 proper (∪E) is one whose major premise types uv itself,

denoted (∪E)[3]. Finally, a ategory-4 proper (∪E) is one whose major premise assigns to a variable

subterm x

i

of uv a union type !1 ∪ !1, suh that �

i

is not a union type or an intersetion type with

a union fator and !1 = �

i

; we denote it (∪E)[4; x
i

]. Taking uv = x2x1x1(x1(x2x1)) = sr (rs) and

B = B2 = { x1 : (� ∪  ) ∩ "; x2 : � }, we give some examples in eah of the ategories 1-4. The word

\same" in plae of the right minor premise of a union elimination indiates a reurrene of the left minor

premise.

B2 ⊢ s : !1 ∪ !2 B2; x : !1 ⊢ xr (rs) : ! B2; x : !2 ⊢ xr (rs) : !
(∪E)[1; s] (i)

B2 ⊢ uv = sr (rs) : !

B2 ⊢ s : !1 ∪ !2 B2; x : !1 ⊢ xr (rx) : ! B2; x : !2 ⊢ xr (rx) : !
(∪E)[1; s] (ii)

B2 ⊢ uv = sr (rs) : !

B2 ⊢ x1 : � ∪  B2; x : � ⊢ x2xx1(x1(x2x)) : ! B2; x :  ⊢ x2xx1(x1(x2x)) : !
(∪E)[2; x1] (i)

B2 ⊢ uv = x2x1x1(x1(x2x1)) : !

B2 ⊢ x1 : � ∪  B2; x : � ⊢ x2xx (x (x2x)) : ! B2; x :  ⊢ x2xx (x (x2x)) : !
(∪E)[2; x1] (ii)

B2 ⊢ uv = x2x1x1(x1(x2x1)) : !

B2 ⊢ uv : !1 ∪ !2 B2; x : !1 ⊢ x : ! B2; x : !2 ⊢ x : !
(∪E)[3]

B2 ⊢ uv : !

B2 ⊢ x2 : � ∪ � B2; x : � ⊢ x2x1x1(x1(xx1)) : ! same

(∪E)[4; x2]
B2 ⊢ uv = x2x1x1(x1(x2x1)) : !

Sine s has two ourrenes in uv = sr (rs), there are three possible (∪E)[1; s]'s aording to whih

ourrenes of s in uv are substituted by x to form the subjet in the minor premises. This subjet may

be either xr (rs) (see the (∪E)[1; s] (i) above) or sr (rx) or xr (rx) (see the (∪E)[1; s] (ii) above). A similar

12

The omponents of a union type 1 ∪ 2 are the types 1 and 2. We use the word \fator" exlusively for intersetions

and the word \omponent" exlusively for unions.
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argument holds for the (∪E)[2; x1], whih has �fteen di�erent instanes, and for the (∪E)[4; x2], whih

has three di�erent instanes. Obviously, a ategory-1 union elimination may only be onsidered, if there

exists a proper, non-variable subterm t of uv. To onsider a ategory-2 union elimination, there must

exist a variable subterm x

i

of uv, suh that �

i

is a union type or an intersetion type with a union fator;

on the other hand, to onsider a ategory-4 union elimination, there must exist a variable subterm x

i

of

uv, suh that �

i

is a type variable or an impliation type or an intersetion type with no union fator.

Before presenting the two ategories of rules, we also need some notes on omparable potential typings

of uv. We say that (i) � is a subtype of � , denoted � 6 � , if and only if x : � ⊢ x : � , (ii) � is equal

to � , denoted � = � , if and only if (� 6 � and � 6 �), and (iii) � is a proper subtype of � , denoted

� < � , if and only if (� 6 � and � 6= �). Adopting a set-theoretial view for types, whih roughly means

onsidering a type as a set of terms with this type, if � < � , then the property de�ning � is more spei�

than the one de�ning � , i.e. � arries more information than � . Let us now onsider two potential typings

x1 : �1; : : : ; xm : �
m

⊢ uv : ! (typing A) and x1 : �1; : : : ; xm : �
m

⊢ uv : !′
(typing B) of uv and an index

i from 1 to m. We distinguish three ases. Case a: if [ ∀ i (�
i

= �

i

) and (!′ = !) ℄, then the two typings are
equal. Case b: if either 1. [ ∀ i (�

i

6 �

i

) and ∃ i (�
i

< �

i

) and (!′ = !) ℄ or 2. [∀ i (�
i

= �

i

) and (!′
> !) ℄,

then typing B is easier than typing A. If 1 holds, typing B displays stronger assumptions and an equal

suedent with respet to typing A, i.e. it provides more information in the assumptions to derive the

information in the suedent. If 2 holds, typing B displays equal assumptions and a weaker suedent

with respet to typing A, i.e. it is alled to derive less information in the suedent from the information

in the assumptions. Obviously, in either ase, typing B is an easier version of typing A. Case : if either

1. [ ∀ i (�
i

> �

i

) and ∃ i (�
i

> �

i

) and (!′ = !) ℄ or 2. [ ∀ i (�
i

= �

i

) and (!′
< !) ℄, then typing B is harder

than typing A. If 1 holds, typing B displays weaker assumptions and an equal suedent with respet to

typing A, i.e. it provides less information in the assumptions to derive the information in the suedent.

If 2 holds, typing B displays equal assumptions and a stronger suedent with respet to typing A, i.e.

it is alled to derive more information in the suedent from the information in the assumptions. This

time, in either ase, typing B is a harder version of typing A. A bottom-up rule whih advanes from a

potential typing of uv at the onlusion to an easier version of it at the premise-level ertainly promotes

the bottom-up searh. On the other hand, a bottom-up rule whih advanes from a potential typing of uv

at the onlusion to a harder version of it at the premise-level hinders the bottom-up searh. Finally, let

us onsider two potential typings x1 : �1; : : : ; xm : �
m

; x : � ⊢ uv = (uv)(x) = ( : : : x : : : x : : : x : : : ) : !
and x1 : �1; : : : ; xm : �

m

; x : �; y : � ⊢ s(y; x) = ( : : : y : : : x : : : y : : : ) : !′
of uv and s(y; x), respetively,

where all the free ourrenes of x in uv are marked and s(y; x) derives from (uv)(x) by substituting some
(possibly none or all) free ourrene of x by y. If [ ∀ i (�

i

= �

i

) and (� = �) and (� = �) and (!′ = !) ℄,
the two typings are equivalent. Equal typings are equivalent, but the inverse is not true.

The �rst rule-ategory is the set {(→E), (∪E)[1], (∪E)[2], (∩I)}. These rules meaningfully ontribute

to the bottom-up ompletion of a potential typing B ⊢ uv : !, when onsidered at the �rst bottom-up

position. An impliation elimination deomposes uv to the smaller-omplexity terms u and v in the left

and right premise, respetively. A ategory-1 union elimination deomposes uv to smaller-omplexity

terms t and s(x) in the major and minor premises, respetively.

B ⊢ t : !1 ∪ !2 B; x : !1 ⊢ s(x) : ! B; x : !2 ⊢ s(x) : !
(∪E)[1; t]

B ⊢ uv = s(t) : !

Sine t is a proper subterm of uv, it is t <



uv. Moreover, sine t is not a variable, it is x =


1 <


t,

whih implies that s(x) <


s(t) = uv by 5.17(iii). A ategory-2 union elimination deomposes a union
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type !1 ∪ !2 in (the ontext of) the onlusion to its omponents !1 and !2 in (the ontext of) the left

minor premise and (the ontext of) the right minor premise, respetively.

B ⊢ x
i

: !1 ∪ !2 B; x : !1 ⊢ s(x; xi) : ! B; x : !2 ⊢ s(x; xi) : !
(∪E)[2; x

i

]
B = { : : : ; x

i

: !1 ∪ !2 ; : : : } ⊢ uv = (uv)(x
i

) : !

This deomposition atually onveys the very purpose of a union elimination rule, whih is the elimination

of union, in a bottom-up manner. If !1 and !2 are not omparable, we have that !1 < !1 ∪ !2 and

!2 < !1 ∪!2. This implies that eah of the minor-premise typings is easier than the onlusion typing

13

,

whih promotes the bottom-up searh. If !1 < !2, then !2 = !1 ∪ !2, whih implies that the typing at

the right minor-premise is equivalent to the onlusion typing, and !1 < !1 ∪ !2, whih implies that the

typing at the left minor-premise is easier than the onlusion typing. If !1 = !2, then !1 = !1∪!2 = !2,

whih implies that eah of the minor-premise typings is equivalent to the onlusion typing. If !1 > !2,

then !1 = !1∪!2, whih implies that the typing at the left minor-premise is equivalent to the onlusion

typing, and !2 < !1 ∪ !2, whih implies that the typing at the right minor-premise is easier than the

onlusion typing. In any ase, what is important for the bottom-up ompletion in a ategory-2 union

elimination is the deomposition of a union ontext-type to its omponents. An intersetion introdution

deomposes an intersetion type !1 ∩ !2 in (the suedent of) the onlusion

14

to its fators !1 and !2

in (the suedent of) the left premise and (the suedent of) the right premise, respetively. If !1 and

!2 are not omparable, we have that !1 > !1 ∩ !2 and !2 > !1 ∩ !2. This implies that eah of the

premise typings is easier than the onlusion typing, whih promotes the bottom-up searh. If !1 < !2,

then !1 = !1 ∩ !2, whih implies that the left-premise typing is equivalent to the onlusion typing,

and !2 > !1 ∩ !2, whih implies that the right-premise typing is easier than the onlusion typing. If

!1 = !2, then !1 = !1 ∩ !2 = !2, whih implies than eah of the premise typings is equivalent to

the onlusion typing. If !1 > !2, then !2 = !1 ∩ !2, whih implies that the right-premise typing is

equivalent to the onlusion typing, and !1 > !1∩!2, whih implies that the left-premise typing is easier

than the onlusion typing. In any ase, though, what is important for the bottom-up ompletion in an

intersetion introdution is the deomposition of an intersetion suedent-type to its fators.

The seond rule-ategory is the set {(∪E)[3], (∪E)[4], (∩E), (∪I)}. These rules just shift a potential

typing B ⊢ uv : ! (or a harder version of it) one level up, when onsidered at the �rst bottom-up

position. A ategory-3 union elimination displays an equivalent or harder version of B ⊢ uv : !, namely
B ⊢ uv : !1 ∪ !2, at the major premise.

B ⊢ uv : !1 ∪ !2 B; x : !1 ⊢ x : ! B; x : !2 ⊢ x : !
(∪E)[3]

B ⊢ uv : !

The type !1 ∪ !2 is suh that x : !1 ⊢ x : ! and x : !2 ⊢ x : !, from whih, by an appropriate union

elimination appliation, we get that y : !1 ∪ !2 ⊢ y : !, i.e. that !1 ∪ !2 6 !. If !1 ∪ !2 = !, then

B ⊢ uv : !1 ∪ !2 is equivalent to B ⊢ uv : !; if !1 ∪ !2 < !, then B ⊢ uv : !1 ∪ !2 is harder than

B ⊢ uv : !. It is easy to hek that a ategory-4 union elimination displays minor premises whih are

equivalent to the onlusion.

13

For example, B; x : !1 ⊢ s(x; x
i

) : ! is easier than B; x : !1 ∪ !2 ⊢ s(x; x
i

) : !, whih is equivalent to B ⊢ (uv)(x
i

) : !.
Therefore, B; x : !1 ⊢ s(x; x

i

) : ! is easier than B ⊢ (uv)(x
i

) : !. This is a natural extension of the onept \easier",

de�ned on the preeding page for omparing potential typings.

14

We should note that the neessary and suÆient ondition to onsider an intersetion introdution at the �rst bottom-up

position of a potential typing B ⊢ uv : ! is that ! is spei�ed as an intersetion type !1 ∩ !2.
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B ⊢ x
i

: �
i

∪ �
i

B; x : �
i

⊢ s(x; x
i

) : ! same

(∪E)[4; x
i

]
B = { : : : ; x

i

: �
i

; : : : } ⊢ uv = (uv)(x
i

) : !

An intersetion elimination displays an equivalent or harder version of B ⊢ uv : !, namely B ⊢ uv : !∩!′
,

at the premise. In general, we have that ! ∩ !′ 6 !. If ! ∩ !′ = !, then B ⊢ uv : ! ∩ !′
is equivalent

to B ⊢ uv : !; if ! ∩ !′
< !, then B ⊢ uv : ! ∩ !′

is harder than B ⊢ uv : !. A union introdution also

displays an equivalent or harder version of B ⊢ uv : ! = !1 ∪ !2, namely B ⊢ uv : !1, at the premise.

In general, we have that !1 6 !1 ∪ !2. If !1 = !1 ∪ !2, then B ⊢ uv : !1 is equivalent to B ⊢ uv : !; if
!1 < !1 ∪ !2, then B ⊢ uv : !1 is harder than B ⊢ uv : !.

We onlude that in order to deide whether bottom-up ompletion of a potential typing B ⊢ uv : !
is possible, we only need to examine rules from the �rst set at the �rst bottom-up position. Rules from

the seond set do not meaningfully ontribute to the bottom-up searh and an be ignored in making

this deision; shifting the typing upward just defers the deision to a later bottom-up step, while shifting

a harder version of the typing upward may even mislead to a negative deision. However, if the typing

is indeed possible, it may be the ase that the atual �rst bottom-up rule belongs to the seond set, e.g.

is an (∩E) (see note 4 where (∩E)'s annot be shifted above an (→E)), but this an be easily settled at

the end, i.e. after a positive deision has been made. If all the rules from the �rst set fail at the �rst

bottom-up position, whih may require to further bottom-up examine rules from the �rst set at �rst

bottom-up positions, then the typing is not possible.

Note 6. If uv = x2x1x1(x1(x2x1)), the transformed derivations �

′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : �

with idential trees T

t

iue

that we are looking for must i) type uv in ontexts B1 and B2, respetively, by �

and �, respetively, and ii) resemble eah other with respet to the struture of (→E)'s and proper (∪E)'s

and their term-statements. Working the trees (T t

iue

)′1 and (T t

iue

)′2 bottom-up, a �rst bottom-up step of a

shared (→E) or a shared proper (∪E) must prove progress with respet to the typing in at least one of

�

′
1 and �

′
2; there is no point in trying a step where the typing (or a harder version of it) is shifted upward

in both �

′
1 and �

′
2. Among (→E)'s and proper (∪E)'s, the set {(→E), (∪E)[1], (∪E)[2]} proves progress

with respet to the typing, while the set {(∪E)[3], (∪E)[4]} does not (see note 5). So, a �rst bottom-up

step of a shared (∪E)[3] or a shared (∪E)[4] is exluded; a �rst bottom-up step of a shared proper (∪E)

where one of the derivations displays a (∪E)[3] and the other one displays a (∪E)[4] does not even deliver

mathing term-statements, so it is exluded anyway. If there is progress with respet to the typing in

both �

′
1 and �

′
2, then the step involves a shared (→E) (see ase 1 below) or a shared (∪E)[1] (see ase

2 below) or a shared (∪E)[2] (see ase 3 below). We annot onsider a step of a shared proper (∪E)

where one of the derivations displays a (∪E)[1] and the other one displays a (∪E)[2], as this ombination

does not deliver mathing term-statements. If there is progress with respet to the typing in either �

′
1 or

�

′
2, then the step involves a shared proper (∪E) and the derivation in whih progress is made displays a

(∪E)[2], while the other one displays a (∪E)[4] (see ase 4 below); this is the only ombination between

the progress-set {(∪E)[1], (∪E)[2]} and the non-progress-set {(∪E)[3], (∪E)[4]} whih delivers mathing

term-statements.

In onstruting �

′
1 and �

′
2, the general idea is to make a �rst bottom-up transformation step whih

gives an idential bottom-part in trees of impliations and union eliminations with terms and also makes

enough bottom-up progress with respet to the typing, so that the remaining transformation needs to be

done on �nite sets of derivations, eah of whih ontains derivations proving statements that type a term

of smaller omplexity than uv.

Having in mind the preliminary notes 1-6 given above, we need to examine the following ases of a

�rst bottom-up step for the trees (T t

iue

)′1 and (T t

iue

)′2.
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1. Can we onstrut �

′
1 and �

′
2, suh that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom

(→E), as shown below?

•
S ⊢ u

◗
◗
◗
◗◗•

→E

S ⊢ uv

✑
✑
✑
✑✑

•
S ⊢ v

We want a �

′
1 :: B1 ⊢ uv : � with the following bottom part.

B1 ⊢ u : !1 → ! B1 ⊢ v : !1
(→E)

B1 ⊢ uv : !
(∩E)

�

′
1 :: B1 ⊢ uv : �

However, the term u is not typable in ontext B1 by an impliation type. We outline below the bottom-up

searh with root B1 ⊢ u : !1 → !. In this bottom-up searh and others to follow, we only onsider rules

from the set {(→E), (∪E)[1], (∪E)[2], (∩I)} at the �rst bottom-up position (reall note 5). The symbol

\×" next to a rule-sign indiates that suh a rule-appliation at the �rst bottom-up position annot

deliver the required root-typing, in whih ase we use a dotted horizontal line in-between the premise and

onlusion levels. Further, the shorthand \not" next to a rule-sign indiates that suh a rule-appliation

annot be onsidered at the �rst bottom-up position due to inappropriate form of the ontext-types or

the subjet or the prediate of the required root-typing. We also use the gray olor for suedent-types

whih are initially desirable in a bottom-up searh, but �nally prove impossible.

i) Considering an (→E) at the �rst bottom-up position of a potential typing B1 ⊢ u : !1 → !, we see

that it does not work.

by (→E), see �10

[(∪E)[1; 2] not, (∩I)not℄

B1 ⊢ s : � ∪ � 6= impliation type

15

right premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1 ⊢ u = sr : !1 → !

ii) Considering the only possible (∪E)[1], whih is the (∪E)[1; s] shown below, at the �rst bottom-up

position of a potential typing B1 ⊢ u : !1 → !, we see that it does not work.

B1 ⊢ s : � ∪ �

by (→E), see �110

[(∪E)[1; 2] not, (∩I)not℄

B1; x : � ⊢ xx1 : !1 → ! =  → �

by (→E), see �120

[(∪E)[1; 2] not, (∩I)not℄

B1; x : � ⊢ xx1 : !1 → ! = � → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B1 ⊢ u = sx1 : !1 → !

15

We annot extrat � (and then the impliation type � →  → �) from � ∪ � by a (∪E)-appliation with major premise

B1 ⊢ s : �∪ � and onlusion B1 ⊢ s : �, as suh an appliation would require a right minor premise B1; x : � ⊢ x : �, whih
is not possible. A similar argument shows that we an neither extrat � .



106 Chapter 5. Correspondene between IUL

m

and IUT

⊕

iii) We annot onsider a (∪E)[2] at the �rst bottom-up position of a potential typing B1 ⊢ u : !1 → !,

as the only variable subterms x1 and x2 of u are assigned � = (Æ → ) ∩ (� → �) ∩ � ∩ " and � → � ∪ � ,
respetively, in B1. We an neither onsider an (∩I) at the �rst bottom-up position of a potential typing

B1 ⊢ u : !1 → !, as the suedent-type is not spei�ed as an intersetion type.

We gather that a �

′
1 with an (→E) bottom part is not feasible; so, there is no need to examine if

suh a �

′
2 is doable. Still, if we ahieved �

′
1 and �

′
2 whose trees (T t

iue

)′1 and (T t

iue

)′2 existed and shared a

bottom (→E), the transformation would redue to further transforming �

′
10 and �

′
20, whih would type

u <



uv, and also to further transforming �

′
11 and �

′
21, whih would type v <



uv.

(T t

iue

)′10

S ⊢ u
•
◗
◗
◗
◗◗•

→E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•
S ⊢ v

(T t

iue

)′11 (T t

iue

)′20

S ⊢ u
•
◗
◗
◗
◗◗•

→E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
S ⊢ v

(T t

iue

)′21

2. Can we onstrut a �

′
1 and �

′
2, suh that the trees (T

t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom
(∪E)[1]? We distinguish three ases.

2a. A bottom (∪E)[1; s]. Sine s has two ourrenes in uv = sr (rs), there are three possible

(∪E)[1; s]'s. We examine the ase with subjet xr (rx) = u

′
v

′
in the minor premises, whih, sine �1

already displays suh a bottom part, amounts to examining if we an onstrut a �

′
2, suh that the tree

(T t

iue

)′2 exists and has the following bottom part.

S ⊢ s
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; x ⊢ u′

v

′

We want a �

′
2 :: B2 ⊢ uv : � with the following bottom part.

by (→E): !1 ∪ !2 = � ∪ �

by (∪E)[2; x1]: !1 ∪ !2 = �

��

∪  
�

[(∪E)[1] not, (∩I)not℄

B2 ⊢ s : !1 ∪ !2 B2; x : !1 ⊢ xr (rx) = u

′
v

′ : � B2; x : !2 ⊢ xr (rx) = u

′
v

′ : �
(∪E)[1; s]

�

′
2 :: B2 ⊢ uv = sr (rs) : �

The type !1 ∪ !2 may be either �

��

∪  
�

, where �

��

= � → � → � and  

�

=  →  → �, or � ∪ �.
We outline below how the �

��

∪  
�

ase fails. The � ∪ � ase fails, as well.
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by (∪E)[2; x1], see right below

B2 ⊢ s : �
��

∪  
�

see i), ii), and iii) below

[(∩I)not℄

B2; x : �
��

⊢ xr (rx) = u

′
v

′ : � B2; x :  
�

⊢ xr (rx) = u

′
v

′ : �
(∪E)[1; s]

�

′
2 :: B2 ⊢ uv = sr (rs) : �

B2 ⊢ x1 : �
(∩E1)

B2 ⊢ x1 : � ∪  

: : : ⊢ x2 : �
(∩E)

: : : ⊢ x2 : �→ �

��

: : : ⊢ y : �
(→E)

B2; y : � ⊢ x2y : �
��

(∪I1)

B2; y : � ⊢ x2y : �
��

∪  
�

: : : ⊢ x2 : �
(∩E)

: : : ⊢ x2 :  →  

�

: : : ⊢ y :  
(→E)

B2; y :  ⊢ x2y :  
�

(∪I2)

B2; y :  ⊢ x2y : �
��

∪  
�

(∪E)[2; x1]

B2 ⊢ x2x1 = s : �
��

∪  
�

i) Considering an (→E) at the �rst bottom-up position of a potential typing B2; x : �
��

⊢ u

′
v

′ : �,
we see that it does not work. The abbreviations \lmp" and \rmp" stand for \left minor premise" and

\right minor premise", respetively. Likewise, the abbreviations \lp" and \rp" stand for \left premise"

and \right premise", respetively.

B2; x : �
��

⊢ x1 : �
(∩E1)

B2; x : �
��

⊢ x1 : � ∪  lmp

· · · ⊢ x : � → � → � · · · ⊢ y :  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄

B2; x : �
��

; y :  ⊢ xy : ! → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1]× [(→E)×, (∪E)[1] not, (∩I)not℄

B2; x : �
��

⊢ u′ = xx1 : ! → � rp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×

B2; x : �
��

⊢ u′v′ : �

ii) Considering a (∪E)[1] at the �rst bottom-up position of a potential typing B2; x : �
��

⊢ u′v′ : �,
we �nd that it does not work. The (∪E)[1; u′] does not work, sine a typing B; x : �

��

⊢ u′ : !1 ∪ !2 is

not possible; the bottom-up searh for suh a typing is similar to the one shown in i) above for a typing

B; x : �
��

⊢ u′ : ! → �. We present the failure of the (∪E)[1; v′] below.

(∪E)[2; x1]×, see right below

[(→E)×, (∪E)[1] not, (∩I)not℄

B2; x : �
��

⊢ v′ = x1x : !1 ∪ !2 left minor premise right minor premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; v′] ×
B2; x : �

��

⊢ u′
v

′ : �

B2; x : �
��

⊢ x1 : � ∪  

· · · ⊢ y : � · · · ⊢ x : �
��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄
B2; x : �

��

; y : � ⊢ yx : !1 ∪ !2 rmp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×
B2; x : �

��

⊢ v′ = x1x : !1 ∪ !2

iii) Considering a (∪E)[2] at the �rst bottom-up position of a potential typing B2; x : �
��

⊢ u′v′ : �,
we also �nd that it does not work. We illustrate the failure of one of the three possible (∪E)[2; x1]'s below.

The other two fail, as well.
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B2; x : �
��

⊢ x1 : � ∪  left minor premise

(∪E)[2; x1]×, see right below

[(→E)×, (∪E)[1]×, (∩I)not℄

B2; x : �
��

; y :  ⊢ xy (x1x) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×
B2; x : �

��

⊢ u′
v

′ = xx1(x1x) : �

B2; x : �
��

; y :  ⊢ x1 : � ∪  lmp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)×, (∪E)[1]× [(∪E)[2] not, (∩I)not℄

B2; x : �
��

; y :  ; z :  ⊢ xy (zx) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×

B2; x : �
��

; y :  ⊢ xy (x1x) : �

We onlude that a �

′
2 with a bottom (∪E)[1; s], whih is idential (with respet to term-statements) to

the bottom (∪E)[1; s] in �1, is not possible. Yet, if we ahieved a �
′
2 with a tree (T

t

iue

)′2 bottom-idential to
the tree (T t

iue

)1, the transformation would redue to further transforming �10 and �
′
20, whih would type

s <



sr = u <



uv, and also to further transforming �11; �12; �
′
21, and �

′
22, whih would type u

′
v

′
<



uv.

(T t

iue

)10

S ⊢ s
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)1

✑
✑
✑
✑✑

•
S; x ⊢ u′

v

′

(T t

iue

)11 (T t

iue

)′20

S ⊢ s
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
S; x ⊢ u′

v

′

(T t

iue

)′21

For eah of the other two possible (∪E)[1; s]'s, at least one of �′
1 and �

′
2 fails.

2b. A bottom (∪E)[1; u]. We seek derivations �

′
1 and �

′
2 whose trees (T

t

iue

)′1 and (T t

iue

)′2 both exist and

share the following bottom part.

S ⊢ u
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; x ⊢ xv

So, we seek a �

′
1 :: B1 ⊢ uv : � with the following bottom part.

by (∪E)[1; s], see right below

[(→E)×, (∪E)[2]not, (∩I)not℄

B1 ⊢ u : ( → �) ∪ (� → �)

see i) and ii) below

[(∪E)[2] not, (∩I) not℄

B1; x :  → � ⊢ xv : � B1; x : � → � ⊢ xv : �
(∪E)[1; u]

�

′
1 :: B1 ⊢ uv : �
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B1 ⊢ s : � ∪ �

: : : ⊢ y : �
(∩E1)

: : : ⊢ y : � →  → �

: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : �
(→E)

B1; y : � ⊢ yx1 :  → �

(∪I1)

B1; y : � ⊢ yx1 : ( → �) ∪ (� → �)

: : : ⊢ y : �
(∩E1)

: : : ⊢ y : "→ � → �

: : : ⊢ x1 : �
(∩E2)

: : : ⊢ x1 : "
(→E)

B1; y : � ⊢ yx1 : � → �

(∪I2)

B1; y : � ⊢ yx1 : ( → �) ∪ (� → �)
(∪E)[1; s]

B1 ⊢ sx1 = u : ( → �) ∪ (� → �)

i) Considering an (→E) at the �rst bottom-up position of a potential typing B1; x :  → � ⊢ xv : �,
we see that it does not work.

B1; x :  → � ⊢ x :  → �

(∪E)[1; s]×, see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B1; x :  → � ⊢ v = x1s : 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1; x :  → � ⊢ xv : �

B

′
1 ⊢ s : � ∪ �

: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : Æ → 

: : : ⊢ y : �
(∩E2)

: : : ⊢ y : Æ
(→E)

B

′
1; y : � ⊢ x1y :  = 

: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : � → �

: : : ⊢ y : �
(∩E2)

: : : ⊢ y : �
(→E) [(∪E)[1; 2] not, (∩I)not℄

B

′
1; y : � ⊢ x1y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×

B

′
1 = B1 ∪ {x :  → � } ⊢ v = x1s : 

ii) Considering an (∪E)[1] at the �rst bottom-up position of a potential typing B1; x :  → � ⊢ xv : �,
we �nd that it does not work. We examine the two possible (∪E)[1]'s, the (∪E)[1; v] and the (∪E)[1; s].

by (∪E)[1; s], see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B1; x :  → � ⊢ v :  ∪ � lmp

· · · ⊢ x :  → � · · · ⊢ y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄
B1; x :  → �; y : � ⊢ xy : �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; v] ×
B1; x :  → � ⊢ xv : �

B

′
1 ⊢ s : � ∪ �

B

′
1; y : � ⊢ x1 : �

(∩E)

B

′
1; y : � ⊢ x1 : Æ → 

B

′
1; y : � ⊢ y : �

(∩E2)

B

′
1; y : � ⊢ y : Æ

(→E)

B

′
1; y : � ⊢ x1y : 

(∪I1)

B

′
1; y : � ⊢ x1y :  ∪ �

B

′
1; y : � ⊢ x1 : �

(∩E)

B

′
1; y : � ⊢ x1 : � → �

B

′
1; y : � ⊢ y : �

(∩E2)

B

′
1; y : � ⊢ y : �

(→E)

B

′
1; y : � ⊢ x1y : �

(∪I2)

B

′
1; y : � ⊢ x1y :  ∪ �

(∪E)[1; s]

B

′
1 = B1 ∪ {x :  → � } ⊢ x1s = v :  ∪ �

B1; x :  → � ⊢ s : � ∪ � left minor premise

(∪E)[1; x1y]×, see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B1; x :  → �; y : � ⊢ x (x1y) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B1; x :  → � ⊢ xv = x (x1s) : �
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: : : ⊢ x1 : �
(∩E)

: : : ⊢ x1 : � → �

: : : ⊢ y : �
(∩E2)

: : : ⊢ y : �
(→E)

B

′′
1 ⊢ x1y : �

(∪I)

B

′′
1 ⊢ x1y : � ∪ �

· · · ⊢ x :  → � · · · ⊢ z :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄

B

′′
1 ; z : � ⊢ xz : � same

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x1y] ×

B

′′
1 = B1 ∪ {x :  → �; y : � } ⊢ x (x1y) : �

Sine suh a �

′
1 is not possible, there is no need to look for suh a �

′
2. Still, if we ahieved �

′
1 and �

′
2

whose trees (T t

iue

)′1 and (T t

iue

)′2 existed and shared a bottom (∪E)[1; u], the transformation would redue

to transforming �

′
10 and �

′
20, whih would type u <



uv, and also to transforming �

′
11; �

′
12; �

′
21, and �

′
22,

whih would type xv <



uv.

(T t

iue

)′10

S ⊢ u
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•
S; x ⊢ xv

(T t

iue

)′11 (T t

iue

)′20

S ⊢ u
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
S; x ⊢ xv

(T t

iue

)′21

2. A bottom (∪E)[1; v]. This ase also fails.

3. Can we onstrut �

′
1 and �

′
2, suh that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom

(∪E)[2]? This ase is not possible, as the types assigned to x1 and x2 in B1 do not permit the onsideration

of a �rst bottom-up (∪E)[2] in a �

′
1 :: B1 ⊢ uv : �.

4. Can we onstrut �

′
1 and �

′
2, suh that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom

proper (∪E), whih is a �rst bottom-up (∪E)[2] in one of the derivations and a �rst bottom-up (∪E)[4]

in the other? We distinguish two ases.

4a. A bottom (∪E)[2] in �′
1 and a bottom (∪E)[4] in �′

2. Suh a ase is not possible beause, as already

explained in 3, we annot onsider a �rst bottom-up (∪E)[2] in �′
1.

4b. A bottom (∪E)[4] in �′
1 and a bottom (∪E)[2] in �′

2. Starting from a root B2 ⊢ uv : � and working

bottom-up, there are �fteen di�erent ases of a (∪E)[2; x1], aording to whih ourrenes of x1 in uv

are substituted by a variable y 6∈ {x1; x2} to form the subjet in the minor premises, and no ase of a

(∪E)[2; x2]. So, there are �fteen di�erent ases of a �rst bottom-up (∪E)[4; x1] in �
′
1 and a �rst bottom-up

(∪E)[2; x1] in �
′
2 with mathing orresponding term-statements. We examine two suh ases 4b1 and 4b2,

showing the failure of �

′
1 in the former and the failure of �

′
2 in the latter.

4b1. The ase with subjet x2yy (y (x2x1)) = s

′
y (ys) = u

′′
v

′′
in the minor premises. Sine �2 already

displays suh a bottom part, the ase redues to examining if we an onstrut a �

′
1, suh that the tree

(T t

iue

)′1 exists and has the following bottom part.
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S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; y ⊢ u′′

v

′′

We seek a �

′
1 :: B1 ⊢ uv : � with the following bottom part.

B1 ⊢ x1 : � ∪ �

see i) and ii) below

[(∪E)[2]not, (∩I)not℄

B1; y : � ⊢ x2yy (y (x2x1)) = u

′′
v

′′ : � same

(∪E)[4; x1]
�

′
1 :: B1 ⊢ uv = x2x1x1(x1(x2x1)) : �

i) Considering an (→E) at the �rst bottom-up position of a potential typing B1; y : � ⊢ u′′v′′ : �, we
see that it does not work.

(∪E)[1; s′]×, see right below

[(→E)×, (∪E)[2] not, (∩I) not℄

B1; y : � ⊢ u′′ = s

′
y : !→ � right premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1; y : � ⊢ u′′

v

′′ : �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : � ⊢ s′ = x2y : � ∪ �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : � ⊢ xy : ! → � =  → �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : � ⊢ xy : ! → � = � → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s′] ×

B1; y : � ⊢ u′′ = s

′
y : ! → �

If the (→E) worked and the tree (T t

iue

)′1 existed, we would have the following trees (T t

iue

)′1 and

(T t

iue

)2. The transformation would then redue to transforming �

′
110; �

′
120; �210, and �220, whih would

type u

′′ =


u <



uv, and also to transforming �

′
111; �

′
121; �211, and �221, whih would type v

′′ =


v <



uv.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ u′′
v

′′

→E

•
S; y ⊢ u′′

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)′111

•
S ⊢ r

◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)2

✑
✑
✑
✑✑

•
→E

S; y ⊢ u′′
v

′′

•
S; y ⊢ u′′

(T t

iue

)210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)211
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ii) Considering a (∪E)[1] at the �rst bottom-up position of a potential typing B1; y : � ⊢ u

′′
v

′′ : �,
we �nd that it does not work. We present the failure of the (∪E)[1; s′] below. The other three possible

(∪E)[1]'s fail, as well.

B1; y : � ⊢ s′ : � ∪ �

see a), b), ), and d) below

[(∪E)[2] not, (∩I) not℄

B1; y : �; x : � ⊢ xy (ys) : � right minor premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s′] ×
B1; y : � ⊢ u′′

v

′′ = s

′
y (ys) : �

B1; y : �; x : � ⊢ xy :  → �

(∪E)[1; s]×, see right below

[(→E)×, (∪E)[2]not, (∩I)not℄

B1; y : �; x : � ⊢ ys : 
a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B1; y : �; x : � ⊢ xy (ys) : �

B1; y : �; x : � ⊢ s : � ∪ �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : �; z : � ⊢ yz :  = 

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B1; y : �; x : �; z : � ⊢ yz :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B1; y : �; x : � ⊢ ys : 

B1; y : �; x : � ⊢ xy : ( → �) ∪ ( → �)

(∪E)[1; s]×, see right below

[(→E)×, (∪E)[1; ys]×, (∪E)[2]not, (∩I)not℄

B1; y : �; x : �; z :  → � ⊢ z (ys) : � same

b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; xy] ×
B1; y : �; x : � ⊢ xy (ys) : �

B

′
1 ⊢ s : � ∪ � lmp

B

′
1; w : � ⊢ z :  → �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B

′
1; w : � ⊢ yw :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; yw]×, (∪E)[2]not, (∩I)not℄
B

′
1; w : � ⊢ z (yw) : �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B

′
1 = B1 ∪ { y : �; x : �; z :  → � } ⊢ z (ys) : �

by (∪E)[1; s], see right below

[(→E)×, (∪E)[2] not, (∩I)not℄

B

′′
1 ⊢ ys :  ∪ � lmp

B

′′
1 ; z : � ⊢ xy :  → � B

′′
1 ; z : � ⊢ z :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; xy]×, (∪E)[2] not, (∩I)not℄

B

′′
1 ; z : � ⊢ xyz : �

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; ys] ×

B

′′
1 = B1 ∪ { y : �; x : � } ⊢ xy (ys) : �

B

′′
1 ⊢ s : � ∪ �

B

′′
1 ; z : � ⊢ y : �

(∩E)

B

′′
1 ; z : � ⊢ y : Æ → 

B

′′
1 ; z : � ⊢ z : �

(∩E2)

B

′′
1 ; z : � ⊢ z : Æ

(→E)

B

′′
1 ; z : � ⊢ yz : 

(∪I1)

B

′′
1 ; z : � ⊢ yz :  ∪ �

B

′′
1 ; z : � ⊢ y : �

(∩E)

B

′′
1 ; z : � ⊢ y : � → �

B

′′
1 ; z : � ⊢ z : �

(∩E2)

B

′′
1 ; z : � ⊢ z : �

(→E)

B

′′
1 ; z : � ⊢ yz : �

(∪I2)

B

′′
1 ; z : � ⊢ yz :  ∪ �

(∪E)[1; s]

B

′′
1 = B1 ∪ { y : �; x : � } ⊢ ys :  ∪ �
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B

′′
1 ⊢ s : � ∪ � lmp

B

′′
1 ; z : � ⊢ xy :  → �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B

′′
1 ; z : � ⊢ yz :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; xy]×, (∪E)[1; yz]×, (∪E)[2] not, (∩I) not℄

B

′′
1 ; z : � ⊢ xy (yz) : �

d)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×

B

′′
1 = B1 ∪ { y : �; x : � } ⊢ xy (ys) : �

If the (∪E)[1; s′] worked and the tree (T t

iue

)′1 existed, we would have the following tree (T t

iue

)′1.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ u′′
v

′′

∪E

•
S; y ⊢ s′

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xyv′′

(T t

iue

)′111

We would then transform �2 to a �
′
2 :: B2 ⊢ uv : �, suh that the tree (T t

iue

)′2 exists and is bottom-idential
to the tree (T t

iue

)′1. We denote \�(w)" a weakened version of a derivation �.

B2 ⊢ x1 = r : �
(∩E1)

B2 ⊢ r : � ∪  

see below

�

′
21 :: B2; y : � ⊢ x2yy (ys) = u

′′
v

′′ : �

see below

�

′
22 :: B2; y :  ⊢ x2yy (ys) = u

′′
v

′′ : �
(∪E)

�

′
2 :: B2 ⊢ sr (rs) = uv : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : �→ �

��

B

�

⊢ y : �
(→E)

B

�

⊢ x2y : �
��

(∪I)

�

′
210 :: B

�

⊢ x2y = s

′ : �
��

∪ �
��

: : : ⊢ x : �
��

: : : ⊢ y : �
(→E)

B

�

; x : �
��

⊢ xy : � → �

�211(w)

B

�

; x : �
��

⊢ ys : �
(→E)

�

′
211 :: B

�

; x : �
��

⊢ xy (ys) : � same

(∪E)[1; s′]

�

′
21 :: B

�

= B2 ∪ { y : � } ⊢ x2yy (ys) = u

′′
v

′′ : �

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 :  →  

�

B

 

⊢ y :  
(→E)

B

 

⊢ x2y :  
�

(∪I)

�

′
220 :: B

 

⊢ x2y = s

′ :  
�

∪  
�

: : : ⊢ x :  
�

: : : ⊢ y :  
(→E)

B

 

; x :  
�

⊢ xy :  → �

�221(w)

B

 

; x :  
�

⊢ ys : 
(→E)

�

′
221 :: B

 

; x :  
�

⊢ xy (ys) : � same

(∪E)[1; s′]

�

′
22 :: B

 

= B2 ∪ { y :  } ⊢ x2yy (ys) = u

′′
v

′′ : �
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⊕

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•S; y ⊢ u′′
v

′′

∪E

•
S; y ⊢ s′

(T t

iue

)′210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xyv′′

(T t

iue

)′211

The transformation would thus redue to �

′
110; �

′
120; �

′
210, and �

′
220, whih would type s

′
<



u <



uv, and

also to �

′
111; �

′
112; �

′
121; �

′
122; �

′
211; �

′
212; �

′
221, and �

′
222, whih would type xyv

′′
<



u

′′
v

′′ =


uv.

4b2. The ase with subjet x2x1y (y (x2x1)) = sy (ys) = syv

′′
in the minor premises. We seek to

onstrut �

′
1 and �

′
2, suh that the trees (T t

iue

)′1 and (T t

iue

)′2 both exist and share a bottom (∪E), as

shown below.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

✑
✑
✑
✑✑

•
S; y ⊢ syv′′

We want a �

′
2 :: B2 ⊢ uv : � with the following bottom part.

B2 ⊢ x1 : � ∪  

see i), ii), and iii) below

[(∩I)not℄

B2; y : � ⊢ x2x1y (y (x2x1)) = sy (ys) : � right minor premise

(∪E)[2; x1]
�

′
2 :: B2 ⊢ uv = x2x1x1(x1(x2x1)) : �

i) Considering an (→E) at the �rst bottom-up position of a potential typing B2; y : � ⊢ sy (ys) : �,
we see that it does not work.

(∪E)[2; x1]×, see right below

[(→E)×, (∪E)[1; s]×, (∩I)not℄

B2; y : � ⊢ sy : ! → � right premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B2; y : � ⊢ sy (ys) : �
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B2; y : � ⊢ x1 : � ∪  lmp

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

· · · ⊢ x2x :  →  → � · · · ⊢ y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; x2x]×, (∪E)[2] not, (∩I)not℄

B2; y : �; x :  ⊢ x2xy : ! → �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×

B2; y : � ⊢ sy = x2x1y : ! → �

If the (→E) worked in �

′
2 right above the (∪E)[2; x1] and also in �

′
1 right above the

16

(∪E)[4; x1] and

the trees (T t

iue

)′1 and (T t

iue

)′2 existed, the transformation would redue to �

′
110; �

′
120; �

′
210, and �

′
220, whih

would type sy =


u <



uv, and also to �

′
111; �

′
121; �

′
211, and �

′
221, whih would type v

′′ =


v <



uv.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ syv′′
→E

•
S; y ⊢ sy

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)′111

•
S ⊢ r

◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•
→E

S; y ⊢ syv′′

•
S; y ⊢ sy

(T t

iue

)′210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y ⊢ v′′

(T t

iue

)′211

ii) Considering a (∪E)[1] at the �rst bottom-up position of a potential typing B2; y : � ⊢ sy (ys) : �,
we �nd that it does not work. We show the failure of one of the six

17

possible (∪E)[1; s]'s. The other

�ve, as well as the (∪E)[1; sy] and the (∪E)[1; ys], also fail.

B2; y : � ⊢ s : �
��

∪  
�

see a), b), and ) below

[(∪E)[2] not, (∩I) not℄

B2; y : �; x : �
��

⊢ xy (yx) : � right minor premise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; s] ×
B2; y : � ⊢ sy (ys) : �

by (→E)

[(∪E)[1; 2] not, (∩I)not℄

B2; y : �; x : �
��

⊢ xy : ! → � = � → �

· · · ⊢ y : � = � → � · · · ⊢ x : � 6= �

��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄

B2; y : �; x : �
��

⊢ yx : �
a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×

B2; y : �; x : �
��

⊢ xy (yx) : �

B2; y : �; x : �
��

⊢ xy : (�→ �) ∪ (�→ �)

(→E)×, see right below

[(∪E)[1; yx]×, (∪E)[2] not, (∩I) not℄

B2; y : �; x : �
��

; z : �→ � ⊢ z (yx) : � same

b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; xy] ×
B2; y : �; x : �

��

⊢ xy (yx) : �

16

It an be shown that in a �

′
1 with a �rst bottom-up (∪E)[4; x1], the (→E) right above the (∪E)[4; x1] does not work.

17

There are six possible (∪E)[1; s]'s, as there are three hoies for the subjet in the minor premises [xy (ys) or sy (yx) or
xy (yx)℄ and two hoies for the union prediate in the major premise [�

��

∪  
�

or � ∪ �℄.
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⊕

B

′
2 ⊢ z : �→ �

B

′
2 ⊢ y : � = � → � B

′
2 ⊢ x : � 6= �

��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I) not℄
B

′
2 ⊢ yx : �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B

′
2 = B2 ∪ { y : �; x : �

��

; z : �→ � } ⊢ z (yx) : �

· · · ⊢ y : � = � → � · · · ⊢ x : � 6= �

��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I) not℄
B2; y : �; x : �

��

⊢ yx : !1 ∪ !2 lmp rmp

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; yx] ×
B2; y : �; x : �

��

⊢ xy (yx) : �

If this (∪E)[1; s] worked and the tree (T t

iue

)′2 existed, we would have the following tree (T t

iue

)′2.

S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′2

✑
✑
✑
✑✑

•S; y ⊢ sy (ys)
∪E

•
S; y ⊢ s

(T t

iue

)′210

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xy (yx)

(T t

iue

)′211

We would then onstrut a �

′
1 :: B1 ⊢ uv : �, suh that the tree (T t

iue

)′1 exists and is bottom-idential to

the tree (T t

iue

)′2.

B1 ⊢ x1 = r : �
(∪I)

B1 ⊢ r : � ∪ �

see right below

�

′
11 :: B1; y : � ⊢ sy (ys) : �

same

(∪E)[4; x1]
�

′
1 :: B1 ⊢ sr (rs) = uv : �

by (→E)

�

′
110 :: B1; y : � ⊢ x2x1 = s : � ∪ �

see below

�

′
111 :: B1; y : �; x : � ⊢ xy (yx) : �

see below

�

′
112 :: B1; y : �; x : � ⊢ xy (yx) : �

(∪E)[1; s]

�

′
11 :: B1; y : � ⊢ sy (ys) : �

by (→E)

B1; y : �; x : � ⊢ xy :  → �

by (→E)

B1; y : �; x : � ⊢ yx : 
(→E)

�

′
111 :: B1; y : �; x : � ⊢ xy (yx) : �

by (→E)

B1; y : �; x : � ⊢ xy : � → �

by (→E)

B1; y : �; x : � ⊢ yx : �
(→E)

�

′
112 :: B1; y : �; x : � ⊢ xy (yx) : �
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S ⊢ r
•
◗
◗
◗
◗◗•

∪E

S ⊢ uv

(T t

iue

)′1

✑
✑
✑
✑✑

•S; y ⊢ sy (ys)
∪E

•
S; y ⊢ s

(T t

iue

)′110

◗
◗
◗
◗◗✑

✑
✑
✑✑

•
S; y; x ⊢ xy (yx)

(T t

iue

)′111

The transformation would thus redue to �

′
110; �

′
120; �

′
210, and �

′
220, whih would type s <



uv, and also

to �

′
111; �

′
112; �

′
121; �

′
122; �

′
211; �

′
212; �

′
221, and �

′
222, whih would type xy (yx) <



uv.

iii) Considering a (∪E)[2] at the �rst bottom-up position of a potential typing B2; y : � ⊢ sy (ys) : �,
we also �nd that it does not work. We lay out the failure of one of the three possible (∪E)[2; x1]'s. The

other two fail, as well.

B2; y : � ⊢ x1 : � ∪  left minor premise

see a), b), ), and d) below

[(∪E)[2] not, (∩I) not℄

B2; y : �; x :  ⊢ x2xy (y (x2x)) : �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[2; x1] ×
B2; y : � ⊢ sy (ys) = x2x1y (y (x2x1)) : �

by (→E)

[(∪E)[1; 2] not, (∩I) not℄

B

′
2 ⊢ x2x :  →  → � B

′
2 ⊢ y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; x2x]×, (∪E)[2] not, (∩I)not℄
B

′
2 ⊢ x2xy : ! → � right premise

a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E) ×
B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

If the (→E) worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two (∪E)[2; r]'s

and one (→E), and if there was a �

′
1 with an idential bottom part in its tree (T t

iue

)′1, the transformation
would redue to transforming eight derivations typing x2xy < uv and another eight derivations typing

y (x2x) < uv.

B

′
2 ⊢ x2x :  

�

∪  
�

[(→E)×, (∪E)[1; 2] not, (∩I)not℄

B

′
2; z :  

�

⊢ zy : !1 ∪ !2 same

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x2x]× [(→E)×, (∪E)[2] not, (∩I)not℄

B

′
2 ⊢ x2xy : !1 ∪ !2 lmp rmp

b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x2xy] ×

B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

If the (∪E)[1; x2xy] worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two

(∪E)[2; r]'s and one (∪E)[1; x2xy], and if there was a �
′
1 with an idential bottom part in its tree (T t

iue

)′1, the
transformation would redue to transforming eight derivations typing x2xy < uv and sixteen derivations

typing z (y (x2x)) < uv.



118 Chapter 5. Correspondene between IUL

m

and IUT

⊕

B

′
2 ⊢ y : � = � → � B

′
2 ⊢ x2x : � 6=  

�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; x2x]×, (∪E)[2] not, (∩I)not℄
B

′
2 ⊢ y (x2x) : !1 ∪ !2 lmp rmp

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; y (x2x)] ×
B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

If the (∪E)[1; y (x2x)] worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two

(∪E)[2; r]'s and one (∪E)[1; y (x2x)], and if there was a �

′
1 with an idential bottom part in its tree (T t

iue

)′1,
the transformation would redue to transforming eight derivations typing y (x2x) < uv and sixteen

derivations typing x2xyz < uv.

B

′
2 ⊢ x2x :  

�

∪  
�

(∪E)[1; zy]×, see right below

[(→E)×, (∪E)[1; yz]×, (∪E)[2] not, (∩I) not℄

B

′
2; z :  

�

⊢ zy (yz) : � same

d)

18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; x2x] ×
B

′
2 = B2 ∪ { y : �; x :  } ⊢ x2xy (y (x2x)) : �

B

′
2; z :  

�

⊢ z :  →  → � B

′
2; z :  

�

⊢ y :  6= �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→E)× [(∪E)[1; 2] not, (∩I)not℄
B

′
2; z :  

�

⊢ zy : !1 ∪ !2 lmp rmp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(∪E)[1; zy] ×
B

′
2; z :  

�

⊢ zy (yz) : �

If this (∪E)[1; x2x] worked, so that the tree (T t

iue

)′2 existed and displayed a bottom part of two

(∪E)[2; r]'s and one (∪E)[1; x2x], and if there was a �
′
1 with an idential bottom part in its tree (T t

iue

)′1, the
transformation would redue to transforming eight derivations typing x2x < uv and sixteen derivations

typing zy (yz) <


uv.

Besides ases 4b1 and 4b2, the other thirteen possible ases of a �rst bottom-up (∪E)[4; x1] in �
′
1 and

a �rst bottom-up (∪E)[2; x1] in �
′
2 also fail

19

.

Cases 1 to 4 all fail. There seems to be no other meaningful �rst bottom-up step to \equalize" �1 and

�2 with respet to trees of impliations and union eliminations with terms. We therefore onlude that we

annot transform �1 and �2 to �
′
1 :: B1 ⊢ uv : � and �

′
2 :: B2 ⊢ uv : �, respetively, suh that (1∧ 2)

�

′
1
;�

′
2
.

Yet, we urge the reader to further examine the two derivations and propose any transformation we may

have missed.

18

This is one of the three possible (∪E)[1; x2x]'s. The other two do not work, either.

19

This is an appropriate point to elaborate a bit on the intention of a ategory-4 proper (∪E) and how it is atually

realized in its de�nition in Note 5. We intend to de�ne a bottom-up (∪E)[4; x
i

] as a union elimination that does not

deompose a union type !1 ∪ !2 in �

i

, that ould beome the prediate in the major premise, to its omponents !1 and

!2 in the (ontext of the) left and the (ontext of the) right minor premise, respetively. This is beause we want to have

a union elimination that mathes a (∪E)[2; x
i

] termwise without o�ering progress with respet to the typing. However,

the de�nition of a (∪E)[4; x
i

] in Note 5 only overs the ases where �

i

is not a union type or an intersetion type with a

union fator, i.e. the ases where �

i

ontains no union type that ould beome the prediate in the major premise. This is

beause these ases suÆe to handle the bottom-up searh for transforming the spei� derivations �1 :: B1 ⊢ uv : � and

�2 :: B2 ⊢ uv : � of this setion. As explained in ase 4 of the bottom-up searh, starting from a root B1 ⊢ uv : � and a root

B2 ⊢ uv : � and examining whether we an have a �rst bottom-up step involving a (∪E)[2] and a (∪E)[4], the only possible

ase is a �rst bottom-up (∪E)[4; x1] onluding B1 ⊢ uv : � and a �rst bottom-up (∪E)[2; x1] onluding B2 ⊢ uv : �. As

the type � assigned to x1 in B1 is not a union type or an intersetion type with a union fator, it suÆes to de�ne a

(∪E)[4; x
i

] for a �
i

whih is not a union type or an intersetion type with a union fator. If we had a di�erent pair of roots

to start from, e.g. roots whih would both admit a �rst bottom-up (∪E)[2; x
i

], we would need to extend the de�nition of a

(∪E)[4; x
i

] to over all the ases of �

i

.
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In ontrast to the transformation ounterexample given so far, there are quite many transformation

examples, i.e. examples of derivations �1 :: B1 ⊢ t : � and �2 :: B2 ⊢ t :  , where dom(B1) = dom(B2),
suh that ¬(1 ∧ 2)

�1;�2 , whih are transformable to �

′
1 :: B1 ⊢ t : � and �

′
2 :: B2 ⊢ t :  , respetively, so

that (1 ∧ 2)
�

′
1
;�

′
2
. These examples range from very simple ones, i.e. involving simple derivations �1 and

�2, to signi�antly omplex ones. A omplex one, whih is atually a variation of the ounterexample,

an be found in Appendix B.

5.4 Non-restrited orrespondene theorems?

It remains to examine whether the orrespondene between IUL

?

m

and IUT

⊕
an be sustained, if the

auxiliary notion \T

t

iue

" is removed. This amounts to examining 1. whether Theorem 5.10 an be refor-

mulated

20

to just saying \if �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a deorated derivation in IUL

m

, there

are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
" and 2. whether Theorem 5.13 an

be reformulated to just saying \if �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations in IUT

⊕
,

there is a deorated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

", so that the orrespon-

dene between IUL

?

m

and IUT

⊕
is in aordane to the orrespondene between ISL

?

and IT, introdued

in Chapter 1 (see Theorem 1.20). Obviously, given a derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in

IUL

?

m

, there are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
; this is already proved

in 5.10. But what about the inverse? Given derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in
IUT

⊕
, without any additional information about their potential trees T

t

iue

, is there always a derivation

�

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

?

m

? To answer this question, we should reet on the features

the �

i

's need to share, so that their \merging" into a single �

?

is seured. Is the ommon term-statement

x1; : : : ; xm ⊢ t at the root a suÆient ondition for merging, besides being a neessary one? The answer

is negative, as the following example

21

indiates.

Example 5.18 Let � = (� ∪ �) ∩ �; � = � ∩ �2; � = �1 ∩ �, and � = (� ∪ �) ∩ �. Consider the

IUT

⊕
-derivations �1 :: { x : �; y :  } ⊢ x : � and �2 :: { x : �; y : � } ⊢ x : �, as shown below.

x : �; y :  ⊢ x : �
(∩E1)

x : �; y :  ⊢ x : � ∪ �

x : �; y :  ; z : � ⊢ z : �
(∩E1)

x : �; y :  ; z : � ⊢ z : �

x : �; y :  ; z : � ⊢ z : �
(∩E2)

x : �; y :  ; z : � ⊢ z : �
(∪E)

proper

�1 :: {x : �; y :  } ⊢ z[x=z] = x : �

x : �; y : � ⊢ x : �
(∩E1)

x : �; y : � ⊢ x : � ∪ �

x : �; y : �; z : � ⊢ x : �
(∩E2)

x : �; y : �; z : � ⊢ x : �

x : �; y : �; z : � ⊢ x : �
(∩E2)

x : �; y : �; z : � ⊢ x : �
(∪E)

phony

�2 :: {x : �; y : � } ⊢ x[x=z] = x : �

Derivations �1 and �2 share the term-statement x; y ⊢ x at the root. However, they annot be naturally

merged

22

into a single �

? :: x : [(�;  ; �); (�; � ; �)]
x; y

. Any bottom-up attempt

23

for suh a merging

fails, as displayed below.

20

Suh a reformulated theorem is qualitatively same to Theorems 3.10 and 3.22.

21

This is atually Example 3.13 ustomized to the urrent ontext.

22

Nonetheless, as we will later expliate, we may transform �2 to a �

′
2 :: {x : �; y : � } ⊢ x : � ontaining a proper (∪E),

so that �1 and �

′
2 are ompatible and mergeable into a (�′)? :: x : [(�;  ; �); (�; � ; �)]

x; y

.

23

There are two di�erent bottom-up ways to (naturally) merge �1 and �2 into a (anonial) �

?

depending on the order

of appliation of (∩E1) and (∩E2) in the right branh.
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⊕

(ax)

x : [( ; � ; �); (�; � ; �)]
y;x

(X)

x : [(�;  ; �); (�; � ; �)]
x; y

(∩E1)

x : [(�;  ; � ∪ � ); (�; � ; � ∪ �)]
x; y

annot reah an axiom

↑

? : [(�;  ; � ; �); (�; ; � ; � ); (�; �; � ; �); (�; �; � ; �)]
x; y; z

(∩E1),(∩E2)

? : [(�;  ; � ; �); (�;  ; � ; �); (�; �; � ; �); (�; �; � ; �)]
x; y; z

(∪E)

�

? :: ? : [(�;  ; �); (�; � ; �)]
x; y

As already noted in Example 3.13, the failure is due to the inompatibility of the proper (∪E) in �1

and the phony (∪E) in �2.

The above example suggests that the �

i

's need to share more than the term-statement at the root, if

they are to be merged into a single �

?

. The additional ommon features required are atually ditated

by features of the deorated logi and are the following.

I. The �

i

's should have a ommon struture of rules that are global in the logi's level, i.e. they should

have a ommon struture of impliations and union eliminations. Roughly speaking, the root-statement S

i

of �

i

is meant to orrespond to the (deorated) atom A
i

at the root of �

?

and, moreover, the rule struture

of �

i

is meant to impress upon the anestor-atoms of A
i

in �

?

. But, sine the global rule-inferenes in

�

?

, i.e. the impliations and the union eliminations, \san" all the atoms in the premise moleule(s), it

follows that, for i 6= j, the struture of impliations and union eliminations read o� from the anestors of

A
i

should be the same as the struture of impliations and union eliminations read o� from the anestors

of A
j

, i.e. that �

i

and �

j

should have a ommon struture of impliations and union eliminations. On

the other hand, the �

i

's may di�er with respet to rules that are loal in the logi's level, i.e. with respet

to intersetions and union introdutions, as these rules may impress upon anestors of A
i

without at the

same time impressing upon anestors of A
j

.

. . . ,

S

1
i0

R1=(∩E)

S

20
i0 S

21
i0

R2=(→E)

S

3
i0

R3=(→I)

S

4
i0

S

20
i1 S

21
i1

R2=(→E)

S

3
i1

R3=(→I)

S

4
i1

R4=(∩I)
�

i

:: S
i

, . . . ,

S

20
j

S

21
j

R2=(→E)

S

3
j

R3=(→I)

�

j

:: S
j

, . . .

❀

[ : : : ;A1
i0;A

1
i1; : : : ;A

1
j

; : : : ]
R1=(∩E)

[ : : : ;A20
i0 ;A

20
i1 = A1

i1; : : : ;A
20
j

= A1
j

; : : : ] [ : : : ;A21
i0 ;A

21
i1 ; : : : ;A

21
j

; : : : ]
R2=(→E)

[ : : : ;A3
i0;A

3
i1; : : : ;A

3
j

; : : : ]
R3=(→I)

[ : : : ;A4
i0;A

4
i1; : : : ;A

4
j

; : : : ]
R4=(∩I)

�

? :: term : [ : : : ;A
i

; : : : ;A
j

= A4
j

; : : : ]
sequene

Is a ommon struture of impliations and union eliminations enough, though? Derivations �1 and �2

of Example 5.18 have suh a ommon struture, whih onsists of a single union elimination, but annot

be naturally integrated into a �

?

. Studying the example arefully, we see that the term-statements in

the (∪E) of �1 do not math the orresponding term-statements in the (∪E) of �2. In partiular, if
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S = {x; y}, the term-statement S; z ⊢ z in the minor premises of �1 does not math the term-statement

S; z ⊢ x in the minor premises of �2; this is what the inompatibility of the proper (∪E) in �1 and the

phony (∪E) in �2 redues to. Going bak to the �i's, we reason that a seond ommon feature is required

for a natural merging to be possible.

II. Corresponding impliations or union eliminations in the ommon (with respet to impliations and

union eliminations) struture of the �

i

's should have mathing orresponding term-statements. Roughly

speaking, the term-statements in �

i

are meant to beome the deoration in �

?

. But, sine the deoration

\sans" all atoms in a moleule and the only rules in the logi|among the ones that have a ounterpart

in the type system, i.e. among the introdution and elimination rules|where the deoration is modi�ed

are the impliations and the union elimination, it follows that, for i 6= j, the modi�ation of deoration

(by an impliation or a union elimination) in anestors of A
i

should be the same as the modi�ation

of deoration in anestors of A
j

, i.e. that orresponding impliations or union eliminations in �

i

and �

j

should have mathing orresponding term-statements.

. . . ,

x : �i1; y : �i2 ⊢ t : �
i

→ �

i

x : �i1; y : �i2 ⊢ u : �
i

(→E)

x : �i1; y : �i2 ⊢ tu : �
i

x : �i1; y : �i2 ⊢ t : �
i

→  

i

x : �i1; y : �i2 ⊢ u : �
i

(→E)

x : �i1; y : �i2 ⊢ tu :  
i

(∩I)

�

i

:: x : �i1; y : �i2 ⊢ tu : �
i

∩  
i

= �

i

, . . .

. . . ,

x : �j1; y : �j2 ⊢ t : �
j

→ �

j

x : �j1; y : �j2 ⊢ u : �
j

(→E)

�

j

:: x : �j1; y : �j2 ⊢ tu : �
j

, . . .

❀

t : [ : : : ; (Γ
i

; �
i

→ �

i

); (Γ
i

; �
i

→  

i

); : : : ; (Γ
j

; �
j

→ �

j

); : : : ]
x; y

u : [ : : : ; (Γ
i

; �
i

); (Γ
i

; �
i

); : : : ; (Γ
j

; �
j

); : : : ]
x; y

(→E)

tu : [ : : : ; (Γ
i

; �
i

); (Γ
i

;  
i

); : : : ; (Γ
j

; �
j

); : : : ]
x; y

(∩I)

�

? :: tu : [ : : : ;A
i

= (Γ
i

= (�i1; �
i

2) ; �i); : : : ;Aj = (Γ
j

= (�j1; �
j

2) ; �j); : : : ] x; y

As the above two skethes of �

i

reveal, features I and II should hold not only for two distint �

i

's,

but also for premises of an (∩I) (and minor premises of a (∪E)) within a single �

i

. This is beause suh

premises, whih share the same term-statement, are also merged into the same moleule in �

?

, exatly

as the root-statements of the �

i

's are merged into the root-moleule of �

?

. In general, the merging of

statements into the same moleule goes through (∩I) or (∪E) inferenes within eah of the �

i

's, reating

nesting phenomena.

Putting features I and II together, we onlude that the �

i

's should have a ommon struture of

impliations and union eliminations, in whih orresponding impliations or union eliminations should

have mathing orresponding term-statements; this should, of ourse, hold modulo multiple nestings due

to (∩I) or (∪E) inferenes within eah of the �

i

's. The de�nition of trees of impliations and union

eliminations with terms for derivations in IUT

⊕
(De�nition 5.6) and the demand that the �

i

's have

existing

24

and idential suh trees in order to be ompatible for merging into a single �

?

(hypotheses 1

and 2 in Theorem 5.13) put in formal status the onlusion just stated.

The \restrition" that the �

i

's have existing and idential trees T

t

iue

in order to be ompatible for

merging into a single �

?

ould serve as a means for heking if the �

i

's, for whih the only ommon feature

given is the term-statement at the root, are indeed ompatible or if they ould be made ompatible. In

24

The \existing" part takes are of the nestings.
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⊕

partiular, if the trees (T t

iue

)1; : : : ; (T
t

iue

)
n

all exist and are idential, then the �

i

's are naturally ompatible

for merging into a single �

?

. If not, we ould hek if there are transformed �

′
i

's, where �

i

transforms to �

′
i

whih proves the same statement as �

i

, suh that the trees (T t

iue

)′1; : : : ; (T
t

iue

)′
n

all exist and are idential.

If so, then the �

i

's an be made ompatible through transformations to the �

′
i

's, whih are themselves

naturally ompatible for merging into a single (�′)?, proving the desired deorated moleule. Derivations

�1 and �2 of Example 5.18 are not naturally ompatible, as it is (T t

iue

)1 6= (T t

iue

)2, but an, nonetheless,
be made ompatible by transforming �2 to a �

′
2 :: { x : �; y : � } ⊢ x : �, suh that (T t

iue

)′2 = (T t

iue

)1.

x : �; y : � ⊢ x : �
(∩E2)

x : �; y : � ⊢ x : �
(∪I)

x : �; y : � ⊢ x : � ∪ � x : �; y : �; z : � ⊢ z : � x : �; y : �; z : � ⊢ z : �
(∪E)

proper

�

′
2 :: {x : �; y : � } ⊢ z[x=z] = x : �

If there were appropriate transformations for every ase of �

i

's whih are not naturally ompatible,

we would have a non-restrited (i.e. without any referene to trees T

t

iue

) inverse theorem modulo trans-

formations, i.e. a theorem from IUT

⊕
to IUL

?

m

saying \if �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n)
are derivations in IUT

⊕
, there is a deorated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

modulo appropriate transformations of the �

i

's". The proof of suh a theorem would use the notion of

trees T

t

iue

|the so-alled \restrition"|to onsider two ases: (i) the ase where the �

i

's are naturally

ompatible, whih would point to the proof of 5.13 and (ii) the ase where the �

i

's are not naturally

ompatible, whih would need a proof that there is always a transformation to �

′
i

's, whih are naturally

ompatible. However, as the ounterexample setion learly shows, it is not always possible to per-

form transformations whih adjust the ompatibility. Therefore, we annot have a non-restrited inverse

theorem modulo transformations.

Removing restritions, imposed through the notion of trees T

t

iue

, from the diret theorem, i.e. the

theorem from IUL

?

m

to IUT

⊕
, we see that, although a non-restrited diret theorem is possible, it does

not o�er a omplete aount of the projetion|if we may all it so|of IUL

?

m

into IUT

⊕
. This is

beause it does not doument the features of �

?

that impress upon eah of the �

i

's and onstitute their

ommon attributes. The notion of trees T

t

iue

, employed for both IUL

?

m

and IUT

⊕
in onlusions 1-3 of the

restrited theorem 5.10, serves exatly the purpose of desribing these features

25

of �

?

, thus formalizing

the projetion to its full extent.

Conlusively, it is preferred to stik to a restrited diret theorem, while it is neessary to stik to a

restrited inverse theorem.

25

Inverting the analysis about ommon features of ompatible �

i

's, the features of �

?

impressed upon eah of the derived

�

i

's are I. the struture of impliations and union eliminations and II. the deoration (of impliations and union eliminations).

The trae of I and II on the �

i

's should, of ourse, be onsidered modulo nestings due to (∩I)'s or (∪E)'s within eah of

them.



CHAPTER 6

Correspondene between IL

m

and IT

⊕

We examine how the method of trees, i.e. the method employed in Chapter 5 to desribe the orre-

spondene between IUL

?

m

and IUT

⊕
with the aid of trees T

t

iue

, applies to the orrespondene between

the union-exluded systems IL

?

m

and IT

⊕
. Toward this end, we �rst de�ne the notion \tree of impli-

ations with terms", denoted T

t

i

, for both the deorated logi IL

?

m

and the type system IT

⊕
. We then

state and prove theorems of orrespondene between IL

?

m

and IT

⊕
that revise, with the aid of trees T

t

i

,

the orrespondene between ISL

?

and IT, given in Chapter 1. We �nally disuss the orrespondenes

IUL

?

m

↔ IUT

⊕
and IL

?

m

↔ IT

⊕
to deide to what extent the logis IUL

m

and IL

m

indeed orrespond,

through deoration, to the type systems IUT

⊕
and IT

⊕
, respetively.

6.1 Trees of i with terms

We start by de�ning the logi IL

m

and its deoration and also the type system IT

⊕
, all as restritions of

de�nitions given in Chapter 4. We then adjust the method of trees to the restrited systems by de�ning

the notion of tree of impliations with terms for both the deorated logi and the type system.

The natural dedution logi IL

m

, exposed in Figure 6.1, derives from the natural dedution logi IUL

m

,

if we exlude the union rules. The exhange rule and the impliation rules are global, while the intersetion

rules are loal. The system is additive, whih is neessitated in the ase of intersetion introdution, but

hosen in the ase of impliation elimination. It is easy to hek that Propositions 4.4-4.6, 4.10, and 4.11,

whih are all shown for IUL

m

in Chapter 4, also hold for the \smaller" system IL

m

. The deoration of

IL

m

, shown in Figure 6.2, is the restrition of the deoration of IUL

m

to the rules of IL

m

.

The natural dedution type system IT

⊕
, depited in Figure 6.3, derives from the natural dedution

type system IUT

⊕
, if we exlude the union rules. It oinides with the system IT of Chapter 1 and

also with the system deriving from the natural dedution system IUT

ù

of Chapter 2, if we exlude the

(ù)-rule and the union rules. It is easy to verify that Propositions 4.14, 4.16, and 4.17(i), whih are all

shown for IUT

⊕
in Chapter 4, also hold for the \smaller" system IT

⊕
.

Remark 6.1 (i) Sine subjet redution is valid in IT

⊕
(reall Proposition 1.3), ontration an be

derived in IT

⊕
through an impliation redex along with subjet redution.

B; x : �; y : � ⊢ t : �
(→I)

B; x : � ⊢ �y: t : � → �

(ax)

B; x : � ⊢ x : �
(→E)

B; x : � ⊢ (�y: t)x : �
1.3

=⇒
B; x : � ⊢ t[x=y] : �

123
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(ax)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[Γ
i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

[U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
(∩I)

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E1)

[U ; (Γ
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
(∩E2)

[U ; (Γ
i

; �
i

)
i

;V ]

Figure 6.1: The logi IL

m

in natural dedution style.

(ax)

x : [(Γ
i

; �

i

; �
i

)
i

]
p; x

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; y; x; q

(X)

t : [(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
p; x; y; q

t : [(Γ
i

; �

i

; �
i

)
i

]
p; x

(→I)

�x: t : [Γ
i

; �
i

→ �

i

)
i

]
p

t : [(Γ
i

; �
i

→ �

i

)
i

]
p

u : [(Γ
i

; �
i

)
i

]
p

(→E)

tu : [(Γ
i

; �
i

)
i

]
p

t : [U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
p

(∩I)
t : [U ; (Γ

i

; �
i

∩ �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E1)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

t : [U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]
p

(∩E2)

t : [U ; (Γ
i

; �
i

)
i

;V ]
p

Figure 6.2: Non-standard deoration of natural dedution IL

m

.

(ax)

B; x : � ⊢ x : �

B; x : � ⊢ t : �
(→I)

B ⊢ �x: t : � → �

B ⊢ t : � → � B ⊢ u : �
(→E)

B ⊢ tu : �

B ⊢ t : � B ⊢ t : �
(∩I)

B ⊢ t : � ∩ �
B ⊢ t : � ∩ �

(∩E1)

B ⊢ t : �
B ⊢ t : � ∩ �

(∩E2)

B ⊢ t : �

Figure 6.3: The type system IT

⊕
in natural dedution style.
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(ii) An impliation redex along with subjet redution an also derive a ut-like rule in IT

⊕
.

B; x : � ⊢ u : �
(→I)

B ⊢ �x: u : � → � B ⊢ t : �
(→E)

B ⊢ (�x: u)t : �
1.3

=⇒
B ⊢ u[t=x] : �

In the natural dedution IUT

⊕
, where subjet redution is not valid, a ut-like rule an be derived

through a union redex; this will be shown in the next hapter (see Theorem 7.9(i)).

The method of trees in Chapter 5 uses trees with terms that enode only the impliations and the

union eliminations, i.e. these logial rules that are global and have a ounterpart in the type system. In

the urrent ontext, the logial rules that are global and have a ounterpart in the type system are the

impliations solely, so we need to de�ne trees with terms that enode only the impliations.

As far as IL

?

m

is onerned, onsidering the \tree with terms" as expeted

1

, we de�ne the \tree of

impliations with terms" as follows.

De�nition 6.2 (IL

?

m

: Tree of implis with terms T

t

i

) The tree of impliations with terms T

t

i

of a

derivation �

?

in IL

?

m

derives from the tree with terms T

t

of �

?

, if we erase all nodes and orresponding

deoration-statements assoiated to the rules (X) and (∩IE).

As in the ase of IUL

?

m

, the proedure of erasing nodes and orresponding deoration-statements

assoiated to the rules (X) and (∩IE) is well-de�ned, and the tree T

t

i

displays at the root the same

deoration-statement as the tree T

t

.

As far as IT

⊕
is onerned, onsidering the \tree with terms" as expeted

2

, we de�ne the \tree of

impliations with terms" as follows.

De�nition 6.3 (IT

⊕
: Tree of implis with terms T

t

i

) We derive the tree of impliations with terms

T

t

i

of a derivation � in IT

⊕
from the tree with terms T

t

of � by the following algorithm.

. We hoose a topmost (∩I) in the tree with terms of � and erase all nodes and orresponding

term-statements assoiated to (∩E) in the trees with terms of both premises. If the resulting premise

trees of impliations with terms are idential, we identify them and erase the node and orresponding

term-statement assoiated to the (∩I).

. We iterate the above proedure for the tree with terms resulting from the previous step.

. When all the (∩I)'s are eliminated, we make a �nal step to erase any remaining nodes and orre-

sponding term-statements assoiated to (∩E).

As in the ase of IUT

⊕
, the proedure desribed by the above algorithm is well-de�ned, and the �nal

tree T

t

i

attained has a term-statement at the root whih is idential to the term-statement at the root

of the original tree T

t

. However, unlike the algorithm in 5.6, the algorithm in 6.3 always terminates. To

show this, we need the following lemma.

Lemma 6.4 If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations in IT

⊕
that share the same

term-statement x1; : : : ; xm ⊢ t at the root, then the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist and are idential.

1

This is as given in 5.1, but with IL

?

m

in plae of IUL

?

m

.

2

This is as given in 5.5, but with IT

⊕
in plae of IUT

⊕
.
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Proof. We take two derivations �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � and �2 :: x1 : �1; : : : ; xm : �
m

⊢ t :  ,
and we proeed by indution on �1. We allow the [h℄ apply to any �nite number of derivations and denote

S the set {x1; : : : ; xm}.

Base: If �1 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � is an axiom, then �2 ontains only intersetions.

�21 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � . . . �2k :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : �

.

.

.

(∩IE) .

.

.

�2 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x :  

The tree (T t

i

)1 is a single node with term-statement S; x ⊢ x. The algorithm for the tree (T t

i

)2
goes as follows. At any step where a topmost (∩I) is hosen, after erasing nodes and orresponding

term-statements assoiated to (∩E), we get idential premise-trees T

t

i

, whih onsist of a single node

with term-statement S; x ⊢ x. Identifying them and erasing the node and orresponding term-statement

assoiated to the (∩I) results to a single node with term-statement S; x ⊢ x in plae of the tree with

terms rooted at the topmost (∩I). When all the (∩I)'s are eliminated, we are left with a tree with terms

whih is a branh of (∩E)'s with all nodes \arrying" the term-statement S; x ⊢ x. Erasing the nodes

and orresponding term-statements assoiated to the (∩E)'s yields the tree (T t

i

)2, whih is a single node

with term-statement S; x ⊢ x. Sine both trees (T t

i

)1 and (T t

i

)2 are a single node with term-statement

S; x ⊢ x, they are idential.

Indution step: We show the most important ases.

.

�10 :: x1 : �1; : : : ; xm : �
m

; x : �1 ⊢ t : �2
(→I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ �x: t : �1 → �2

Sine a �-abstration an be generated only by an (→I), derivation �2 has the following form.

�210 :: x1 : �1; : : : ; xm : �
m

; x : �1 ⊢ t :  1
(→I)

�21 :: x1 : �1; : : : ; xm : �
m

⊢ �x: t : �1 →  1
. . .

�2k0 :: x1 : �1; : : : ; xm : �
m

; x : �
k

⊢ t :  
k

(→I)

�2k :: x1 : �1; : : : ; xm : �
m

⊢ �x: t : �
k

→  

k

.

.

.

(∩I) .

.

.

�2 :: x1 : �1; : : : ; xm : �
m

⊢ �x: t :  

We take that there are no (∩E)'s in the part of �2 below �21; : : : ; �2k , as we annot apply an (∩E) to a

statement whose prediate is an impliation type �

i

→  

i

(1 6 i 6 k), so that any (∩E) must be roughly
following an (∩I), in whih ase it an be eliminated.

The [h℄ on �10; �210; : : : ; �2k0 implies that the trees (T t

i

)10; (T
t

i

)210; : : : ; (T
t

i

)2k0 all exist and are

idential. The existene of the tree (T t

i

)10 entails the existene of the tree (T t

i

)1, whih has the form

shown below.
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(T t

i

)10 [h℄

S; x ⊢ t
•

→I

•
S ⊢ �x: t

(T t

i

)1

Denoting (T t

i

)210 the ommon tree of impliations with terms of �210; : : : ; �2k0, the algorithm for the tree

(T t

i

)2 goes as follows. At any step where a topmost (∩I) is hosen, we get idential premise-trees T t

i

of

the form displayed below.

(T t

i

)210

S; x ⊢ t
•

→I

•
S ⊢ �x: t

Identifying them and erasing the node and orresponding term-statement assoiated to the (∩I) results

to a tree T

t

i

of the above form in plae of the tree with terms rooted at the topmost (∩I). Therefore,

when all the (∩I)'s are eliminated, we are left with a tree (T t

i

)2, as shown below.

(T t

i

)210 [h℄

S; x ⊢ t
•

→I

•
S ⊢ �x: t

(T t

i

)2

Sine (T t

i

)10 = (T t

i

)210, we get that (T
t

i

)1 = (T t

i

)2.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �1 → � �11 :: x1 : �1; : : : ; xm : �
m

⊢ u : �1
(→E)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ tu : �

Sine an appliation-term an only arise from an (→E), derivation �2 is shematially depited as

shown below.
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�210 :: B2 ⊢ t : �1 →  1 �211 :: B2 ⊢ u : �1
(→E)

�21 :: B2 ⊢ tu :  1
. . .

�2k0 :: B2 ⊢ t : �
k

→  

k

�2k1 :: B2 ⊢ u : �
k

(→E)

�2k :: B2 ⊢ tu :  
k

.

.

.

(∩IE) .

.

.

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ tu :  

The [h℄ on �10; �210; : : : ; �2k0 implies that the trees (T t

i

)10; (T
t

i

)210; : : : ; (T
t

i

)2k0 all exist and are

idential, while the [h℄ on �11; �211; : : : ; �2k1 gives that the trees (T
t

i

)11; (T
t

i

)211; : : : ; (T
t

i

)2k1 all exist and
are idential. The existene of the trees (T t

i

)10 and (T t

i

)11 entails the existene of the tree (T t

i

)1, whih
has the following form.

(T t

i

)10 [h℄

S ⊢ t
•
◗
◗
◗
◗◗•

→E

S ⊢ tu

(T t

i

)1

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)11 [h℄

Denoting (T t

i

)210 the ommon tree of impliations with terms of �210; : : : ; �2k0 and (T t

i

)211 the ommon
tree of impliations with terms of �211; : : : ; �2k1, the algorithm for the tree (T t

i

)2 proeeds as follows.

At any step where a topmost (∩I) is hosen, after erasing nodes and orresponding term-statements

assoiated to (∩E), we get idential premise-trees T t

i

of the following form.

(T t

i

)210

S ⊢ t
•
◗
◗
◗
◗◗•

→E

S ⊢ tu

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)211

Identifying them and erasing the node and orresponding term-statement assoiated to the (∩I) results

to a tree T

t

i

of the above form in plae of the tree with terms rooted at the topmost (∩I). When all

the (∩I)'s are eliminated, we are left with a tree with terms whih is the tree T

t

i

shown above with a

branh of (∩E)'s pasted on its root. Erasing the nodes and orresponding term-statements assoiated to

the (∩E)'s, we obtain the following tree (T t

i

)2.
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(T t

i

)210 [h℄

S ⊢ t
•
◗
◗
◗
◗◗•

→E

S ⊢ tu

(T t

i

)2

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)211 [h℄

Sine (T t

i

)10 = (T t

i

)210 and (T t

i

)11 = (T t

i

)211, we get that (T
t

i

)1 = (T t

i

)2.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �1 �11 :: x1 : �1; : : : ; xm : �
m

⊢ t : �2
(∩I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : �1 ∩ �2

The [h℄ on �10; �11; �2 implies that the trees (T t

i

)10; (T
t

i

)11, and (T t

i

)2 exist and are idential. Sine

(T t

i

)10 = (T t

i

)11, the algorithm for the tree (T t

i

)1 terminates and gives (T t

i

)1 = (T t

i

)10. Therefore, it is
(T t

i

)1 = (T t

i

)2. ⊣

Corollary 6.5 The algorithm in 6.3 always terminates, i.e. any derivation in IT

⊕
has a tree T

t

i

.

Proof. By Lemma 6.4, for n = 1. If � :: x1 : �1; : : : ; xm : �
m

⊢ t : � is a derivation in IT

⊕
, then the tree

(T t

i

)
�

exists. ⊣

The notion of tree of impliations with terms for derivations in IT

⊕
is atually a revision of the notion

of skeleton, introdued in [15℄ for derivations of an extended natural dedution type system, alled NJR.

In [15℄, derivations displaying the same skeleton are alled synhronous and it is shown that two derivations

proving statements that type the same term are synhronous. In the urrent ontext, synhroniity refers

to derivations proving statements that share the same term-statement, whih are shown to display the

same tree T

t

i

by Lemma 6.4.

6.2 Revised orrespondene theorems

Having done the preliminary work, i.e. having introdued the trees T

t

i

for derivations in the deorated

logi IL

?

m

and in the type system IT

⊕
, we an now relate IL

?

m

to IT

⊕
in a way that is ompatible with

the way IUL

?

m

is related to IUT

⊕
in Chapter 5 and, furthermore, revises the theorem relating ISL

?

to IT

in Chapter 1.

Theorem 6.6 (From IL

m

to IT

⊕
) If �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a deorated derivation

in IL

m

, then there exist derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IT

⊕
, suh that

(T t

i

)
i

= (T t

i

)
�

?

.

Proof. Given the �

i

's (1 6 i 6 n) in IT

⊕
, Lemma 6.4 guarantees that the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist

and are idential, so that the identity (T t

i

)
i

= (T t

i

)
�

?

is meaningful. The proof is by indution on �

?

,

letting S denote the set {x1; : : : ; xm}.
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m
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⊕

Base: If �

? :: x : [(�i1; : : : ; �
i

m

; �

i

; �
i

)n
i=1]x1;:::; xm; x is a deorated axiom, then there exist axioms

�

i

:: x1 : �i1; : : : ; xm : �i
m

; x : �
i

⊢ x : �
i

(1 6 i 6 n) in IT

⊕
. It is (T t

i

)
i

= (T t

i

)
�

?

, sine both trees are a

single node with S; x ⊢ x.

Indution step: We show two harateristi ases.

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

; �
i

→ �

i

)n
i=1] x1;:::; xm �

?

1 :: u : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

(→E)

�

? :: tu : [(�i1; : : : ; �
i

m

; �
i

)n
i=1] x1;:::; xm

The [h℄ gives �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �1 → �

i

(1 6 i 6 n), suh that (T t

i

)0i = (T t

i

)
�

?

0
, and

also �1i :: x1 : �i1; : : : ; xm : �i
m

⊢ u : �
i

(1 6 i 6 n), suh that (T t

i

)1i = (T t

i

)
�

?

1
. Applying (→E) to

�0i and �1i, we obtain �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ tu : �
i

(1 6 i 6 n). Sine (T t

i

)0i = (T t

i

)
�

?

0
and

(T t

i

)1i = (T t

i

)
�

?

1
, we get that (T t

i

)
i

= (T t

i

)
�

?

.

(T t

i

)0i

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

i

)
i

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)1i

=
[h℄

(T t

i

)
�

?

0

S ⊢ t
•
◗
◗
◗
◗◗•
S ⊢ tu

(T t

i

)
�

?

→E

✑
✑
✑
✑✑

•
S ⊢ u

(T t

i

)
�

?

1

.

�

?

0 :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; ((�

i

1; : : : ; �
i

m

; �
i

); (�i1; : : : ; �
i

m

; �
i

))n
i=k+1] x1;:::; xm

(∩I)

�

? :: t : [(�i1; : : : ; �
i

m

;  
i

) k
i=1; (�

i

1; : : : ; �
i

m

; �
i

∩ �
i

)n
i=k+1] x1;:::; xm

For 1 6 i 6 k, the [h℄ yields �0i :: x1 : �i1; : : : ; xm : �i
m

⊢ t :  
i

, suh that (T t

i

)0i = (T t

i

)
�

?

0
. It is

�

i

= �0i, so that (T t

i

)16i6k = (T t

i

)0i = (T t

i

)
�

?

0
= (T t

i

)
�

?

. For k + 1 6 i 6 n, the [h℄ gives derivations

�0i0 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

and �0i1 :: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

from whih, by (∩I), we derive

�

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

∩ �
i

. The trees (T t

i

)1; : : : ; (T
t

i

)
k

; (T t

i

)
k+1; : : : ; (T

t

i

)
n

are all idential

(Lemma 6.4), so it is (T t

i

)16i6n = (T t

i

)16i6k = (T t

i

)
�

?

. ⊣

Corollary 6.7 If �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm is a deorated derivation in IL

m

, there is a derivation

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � in IT

⊕
, suh that (T t

i

)1 = (T t

i

)
�

?

.

Proof. By Theorem 6.6, for n = 1. ⊣

Theorem 6.8 (From IT

⊕
to IL

m

) If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are derivations

in IT

⊕
, there is a deorated derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IL

m

, suh that (T t

i

)
�

? =
(T t

i

)
i

.

Proof. Lemma 6.4 guarantees that the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist and are idential, so that the

identity (T t

i

)
�

? = (T t

i

)
i

is meaningful. We onsider two derivations �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � and

�2 :: x1 : �1; : : : ; xm : �
m

⊢ t :  and proeed by indution on �1, allowing the [h℄ apply to any �nite

number of derivations. The letter S stands one more for the set {x1; : : : ; xm}.
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Base: If �1 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � is an axiom, then �2 may only ontain intersetions.

�21 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : � . . . �2k :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x : �

.

.

.

(∩IE) .

.

.

�2 :: x1 : �1; : : : ; xm : �
m

; x : � ⊢ x :  

We obtain a �

? :: x : [(�1; : : : ; �m; � ; �); (�1; : : : ; �m; � ;  )]x1;:::; xm; x by merging �1; �21; : : : ; �2k into

an axiom of the (deorated) logi and then applying exhanges, if neessary, and the (∩IE) inferenes in

the logi that orrespond to the (∩IE) inferenes in �2.

x : [(�1; : : : ; �m; � ; � ); (�1; : : : ; �m; � ; �)
k

i=1
︸ ︷︷ ︸

]
x1;:::; xm; x

.

.

.

(∩IE)

.

.

.

�

? :: x : [(�1; : : : ; �m; � ; � ); (�1; : : : ; �m; � ;  )] x1;:::; xm; x

The tree (T t

i

)
�

?

is a single node with deoration-statement S; x ⊢ x, i.e. it is (T t

i

)
�

? = (T t

i

)1.

Indution step: We show the most typial ases.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : �→ � �11 :: x1 : �1; : : : ; xm : �
m

⊢ u : �
(→E)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ tu : �

Sine tu an only be generated by an (→E) in IT

⊕
, derivation �2 has the form shown below.

�210 :: B2 ⊢ t : �1 →  1 �211 :: B2 ⊢ u : �1
(→E)

�21 :: B2 ⊢ tu :  1
. . .

�2k0 :: B2 ⊢ t : �
k

→  

k

�2k1 :: B2 ⊢ u : �
k

(→E)

�2k :: B2 ⊢ tu :  
k

.

.

.

(∩IE) .

.

.

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ tu :  

The [h℄ on �10; �210; : : : ; �2k0 gives a

�

?

0 :: t : [(�1; : : : ; �m ; �→ �); (�1; : : : ; �m ; �
i

→  

i

)k
i=1]x1;:::; xm
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m
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⊕

suh that (T t

i

)
�

?

0
= (T t

i

)10, while the [h℄ on �11; �211; : : : ; �2k1 yields a

�

?

1 :: u : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �
i

)k
i=1]x1;:::; xm

suh that (T t

i

)
�

?

1
= (T t

i

)11. We then get a �

? :: tu : [(�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm as follows.

�

?

0 �

?

1
(→E)

tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  
i

)k
i=1

︸ ︷︷ ︸
]
x1;:::; xm

.

.

.

(∩IE)

.

.

.

�

? :: tu : [(�1; : : : ; �m ; � ); (�1; : : : ; �m ;  )]
x1;:::; xm

Sine (T t

i

)
�

?

0
= (T t

i

)10 and (T t

i

)
�

?

1
= (T t

i

)11, we infer that (T
t

i

)
�

? = (T t

i

)1.

.

�10 :: x1 : �1; : : : ; xm : �
m

⊢ t : � �11 :: x1 : �1; : : : ; xm : �
m

⊢ t : �
(∩I)

�1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � ∩ �

The [h℄ on �10; �11; �2 gives a �
?

0 :: t : [(�1; : : : ; �m ; �); (�1; : : : ; �m ; �); (�1; : : : ; �m ;  )]
x1;:::; xm , suh

that (T t

i

)
�

?

0
= (T t

i

)10. By (∩I), we then get a �

? :: t : [(�1; : : : ; �m ; � ∩�); (�1; : : : ; �m ;  )]
x1;:::; xm , suh

that (T t

i

)
�

? = (T t

i

)
�

?

0
= (T t

i

)10
6:4
= (T t

i

)1. ⊣

Corollary 6.9 If �1 :: x1 : �1; : : : ; xm : �
m

⊢ t : � is a derivation in IT

⊕
, then there is a deorated

derivation �

? :: t : [(�1; : : : ; �m ; �)]
x1;:::; xm in IL

m

, suh that (T t

i

)
�

? = (T t

i

)1.

Proof. By Theorem 6.8, for n = 1. ⊣

Putting aside the small dissimilarities between the (deorated) logis IL

m

and ISL, Theorem 6.6

revises the \only if" diretion of Theorem 1.20 in that it puts forth the additional fat that the �

i

's and

�

?

share the same impliative struture (with terms), whih is expressed by the identity (T t

i

)
i

= (T t

i

)
�

?

.

Moreover, Theorem 6.8 revises the \if" diretion of Theorem 1.20 by adding the fat that �

?

displays the

same impliative struture (with terms) as the �

i

's, whih is expressed by the identity (T t

i

)
�

? = (T t

i

)
i

.

Comparing Theorem 6.6 (from IL

m

to IT

⊕
) to Theorem 5.10 (from IUL

m

to IUT

⊕
), we see that, due

to Lemma 6.4, there is no need for onlusions of the form \(T t

i

)
i

exists and (T t

i

)
i

= (T t

i

)
j

(i 6= j)"
in the former, as there are in the latter

3

. Furthermore, omparing Theorem 6.8 (from IT

⊕
to IL

m

) to

Theorem 5.13 (from IUT

⊕
to IUL

m

), we �nd that, due to the same lemma, there is no need for hypotheses

of the form \(T t

i

)
i

exists and (T t

i

)
i

= (T t

i

)
j

(i 6= j)" in the former, as there are in the latter

4

.

3

This is meant modulo the di�erentiation in the rules doumented by the trees in the latter.

4

See footnote 3.
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6.3 Disussion of the orrespondenes

Looking at the orrespondene between IL

?

m

and IT

⊕
, let S

IT

⊕
be the set of �nite sets of IT

⊕
-derivations

that share the same term-statement at the root. Obviously, the set S

IT

⊕
is a proper subset of the pow-

erset P( IT⊕) of IT⊕
. Lemma 6.4 implies that a member {�1; : : : ; �n} of S

IT

⊕
is suh that the trees

(T t

i

)1; : : : ; (T
t

i

)
n

all exist and are idential. Theorems 6.6 and 6.8 establish a one-to-one orrespondene

between IL

?

m

and S

IT

⊕
. In partiular, Theorem 6.6 mathes a �

?

in IL

?

m

, onsidered modulo the number

and position of exhange inferenes and also modulo the number and order of appliation of onseutive

loal rule-inferenes, to a set {�1; : : : ; �n} in S

IT

⊕
, suh that (T t

i

)16i6n = (T t

i

)
�

?

. Conversely, Theo-

rem 6.8 mathes a set {�1; : : : ; �n} in S

IT

⊕
to a �

?

in IL

?

m

, onsidered modulo the things mentioned

above, suh that (T t

i

)
�

? = (T t

i

)16i6n.
The question we now have to takle is if we also have a one-to-one orrespondene between IUL

?

m

and

S

IUT

⊕
, where S

IUT

⊕
is the set of �nite sets of IUT

⊕
-derivations that share the same term-statement at

the root. The set S

IUT

⊕
is a proper subset of the powerset P( IUT⊕) of IUT⊕

. The situation here is

a bit more omplex and we need to also de�ne two subsets C1 and C2 of S

IUT

⊕
to get the piture. Let

C1 ⊆ S

IUT

⊕
be suh that, for any set A = {�1; : : : ; �n} in C1, the trees (T

t

iue

)1; : : : ; (T
t

iue

)
n

all exist and

are idential, i.e. hypotheses 1 and 2 of Theorem 5.13 hold for the members of A [notation: (1 ∧ 2)
A

℄.

Further, let C2 ⊆ S

IUT

⊕
be suh that, for any set B = {�1; : : : ; �n} in C2, it is not the ase that the trees

(T t

iue

)1; : : : ; (T
t

iue

)
n

all exist and are idential [notation: ¬(1∧ 2)
B

℄, but there is a transformation to a set

A = {�′
1; : : : ; �

′
n

} in C1, where �i transforms to �
′
i

whih proves the same statement as �

i

(1 6 i 6 n).
To use the terminology introdued in Chapter 5, the members of a set in C1 are \naturally ompatible",

while the members of a set in C2 are \ompatible through transformations"; the hoie of the letter \C"

for the subsets of S

IUT

⊕
derives from the word \ompatible". The fats that (1 ∧ 2)

A

and ¬(1 ∧ 2)
B

,

for any A in C1 and B in C2, imply that C1 ∩ C2 = ∅. Moreover, if C = C1 ∪ C2, the transformation

ounterexample in Setion 5.3 shows that there is a set {�1; �2} in S

IUT

⊕ \ C, i.e. that C  S

IUT

⊕
.

What we have shown in Chapter 5 is a one-to-one orrespondene between IUL

?

m

and C1, whih

mathes a �

?

in IUL

?

m

, onsidered modulo the number and position of exhange inferenes and also

modulo the number and order of appliation of onseutive loal rule-inferenes, to a set {�1; : : : ; �n} in

C1, suh that (T t

iue

)16i6n = (T t

iue

)
�

?

. Theorem 5.10 states the diretion from �

?

to {�1; : : : ; �n}, while
Theorem 5.13 states the inverse. However, we an also onsider one-to-many orrespondenes from IUL

?

m

to C and from C to IUL

?

m

. A one-to-many orrespondene from IUL

?

m

to C mathes a �

?

in IUL

?

m

,

onsidered modulo the usual, not only to its one-to-one equivalent set {�1; : : : ; �n} in C1, but also to

all the sets {�′
1; : : : ; �

′
n

} in C2, suh that �

′
i

proves the same statement as �

i

(1 6 i 6 n). Two distint

IUL

?

m

-derivations �

?

and (�′)? are not neessarily mathed to distint subsets of C. This is the ase

when �

?

and (�′)? prove the same deorated moleule

5

. A one-to-many orrespondene from C to IUL

?

m

mathes a {�1; : : : ; �n} in C1 to its one-to-one equivalent derivation �
?

in IUL

?

m

and a {�1; : : : ; �n} in C2

to the subset of IUL

?

m

inluding all (�′)? whose one-to-one equivalent set {�′
1; : : : ; �

′
n

} in C1 is suh that

�

′
i

proves the same statement as �

i

(1 6 i 6 n). Obviously, distint sets in C1 are mathed to distint

derivations in IUL

?

m

, but distint sets in C2 are not neessarily mathed to distint subsets of IUL

?

m

. We

an speify the latter ase, if we onsider two sets A = {�1; �2} and A

′ = {�′
1; �

′
2} in C2, suh that �

′
1

5

Derivations �

?

and (�′)? orrespond|via the one-to-one orrespondene between IUL

?

m

and C1|to two distint sets

A = {�1; : : : ; �n} and A

′ = {�′
1; : : : ; �

′
n

} in C1, respetively. The fat that �
?

and (�′)? prove the same deorated moleule

implies that �

′
i

proves the same statement as �

i

(1 6 i 6 n). The �
i

's all display the same tree T

t

iue

as �

?

, while the �

′
i

's

all display the same tree T

t

iue

as (�′)?; these trees are distint, sine �? and (�′)? are distint. Therefore, there exists a set

B = {�1; : : : ; �
k

; �

′
k+1; : : : ; �

′
n

} in C2, where 1 6 k < n. This set B belongs to both the subset of C mathed to �

?

and the

subset of C mathed to (�′)?.
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⊕

and �

′
2 prove the same statements as �1 and �2, respetively, the trees (T

t

iue

)1; (T
t

iue

)2; (T
t

iue

)′1; (T
t

iue

)′2 all

exist, and it is

6 (T t

iue

)1 = (T t

iue

)′2 6= (T t

iue

)2 = (T t

iue

)′1. It is lear that the orrespondenes just desribed
di�er from the intended one, i.e. from a one-to-one orrespondene between IUL

?

m

and S

IUT

⊕
. Figure 6.4

illustrates the one-to-one orrespondenes in the intersetion and intersetion-and-union ontexts. In

addition, Figure 6.5 demonstrates the subsets of S

IUT

⊕
with respet to hypotheses 1 and 2 of 5.13 and

shows the paths from a member of S

IUT

⊕ to a member of IUL

?

m

.

The failure of a one-to-one orrespondene between IUL

?

m

and S

IUT

⊕
onfutes the very de�nition of

IUL

m

as a logi for IUT

⊕
. As explained at the end of Setion 4.2, in de�ning IUL

m

we have assumed|

following the pattern in the de�nition of IL

m

(or ISL) as a logi for IT

⊕
|that the moleule struture

serves the purpose of \joining together" statements in IUT

⊕
that share the same term-statement, so

that the premises of an (∩I) in IUT

⊕
provide a single (∩I)-premise in IUL

m

and the minor premises

of a (∪E) in IUT

⊕
provide a single (∪E)-minor-premise in IUL

m

, thus allowing a deoration for IUL

m

that simulates the terms in IUT

⊕
. However, this amounts to assuming a one-to-one orrespondene

between IUL

?

m

and S

IUT

⊕ , whih is not the ase. As shown so far, statements in IUT

⊕
sharing the

same term-statement, e.g. the premises of an (∩I) in IUT

⊕
, must either be naturally ompatible, i.e. in

C1, or, at most, ompatible through transformations, i.e. in C2, in order to be mergeable into the same

deorated moleule in IUL

?

m

. Premises

7

of an (∩I) in S

IUT

⊕ \ C annot be joined together in IUL

?

m

,

whih means that we have assumed more than is atually the ase in de�ning IUL

m

. On the other hand,

the one-to-one orrespondene between IL

?

m

and S

IT

⊕
on�rms the de�nition of IL

m

as a logi for IT

⊕
;

Lemma 6.4 ensures that the premises of any (∩I) in IT

⊕
are naturally ompatible for merging into the

same deorated moleule in IL

?

m

. So, unfortunately, although the logi IL

m

indeed expresses the type

system IT

⊕
on a logial level, its extension with union IUL

m

is not appropriate to express (the whole

of) IUT

⊕
on a logial level. It atually expresses the proper subset of IUT

⊕
where premises of an (∩I)

and minor premises of a (∪E) belong to C, i.e. where premises of an (∩I) and minor premises of a (∪E)

display, modulo transformations, the same tree T

t

iue

.

6

The set B = {�1; �′
2} is in C1 and is suh that �1 and �

′
2 prove the same statements as �1 and �2, respetively, and

also the same statements as �

′
1 and �

′
2, respetively. If �

?

is the one-to-one equivalent derivation of B in IUL

?

m

, then �

?

belongs to both the subset of IUL

?

m

mathed to A and the subset of IUL

?

m

mathed to A

′
.

7

The ounterexample derivations �1 :: x1 : �; x2 : � → � ∪ � ⊢ uv : � and �2 :: x1 : �; x2 : � ⊢ uv : � (see Setion 5.3),

whih are in S

IUT

⊕ \ C, are not eligible for premises of an (∩I). So, one might wonder if there atually exist premises of

an (∩I) in S
IUT

⊕ \ C. However, we believe that modifying �1 to �̃1 :: x1 : � ∩ �; x2 : (� → � ∪ �) ∩ � ⊢ uv : � and �2

to �̃2 :: x1 : � ∩ �; x2 : (� → � ∪ �) ∩ � ⊢ uv : �, so that we get derivations whih are eligible for premises of an (∩I), we

still have a pair in S

IUT

⊕ \C. Derivations �̃1 and �̃2 di�er from �1 and �2, respetively, only in additional (∩E) inferenes

at the top, whih implies that (T t
iue

)̃1 = (T t
iue

)1 and (T t
iue

)̃2 = (T t
iue

)2, whih, in turn, implies that {�̃1; �̃2} 6∈ C1. To

justify that {�̃1; �̃2} 6∈ C2, we follow the pattern given in 5.3 to justify that {�1; �2} 6∈ C2, although the work required is

onsiderably inreased.
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Intersetion and Union

IUL

?

m

S

IUT

⊕

C1

C2

5

.

1

0

5

.

1

3

Intersetion

IL

?

m

S

IT

⊕

6.6

6.8

Figure 6.4: One-to-one orrespondenes.
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⊕

S

IUT

⊕

A = {�1; �2 }

�1 :: B1 = {x1 : �1; : : : ; xm : �
m

} ⊢ t : �

�2 :: B2 = {x1 : �1; : : : ; xm : �
m

} ⊢ t :  

A ∈ C1

(1 ∧ 2)
A

5.13

for �1; �2

IUL

?

m

�

? :: t : [A;B ]
x1;:::; xm

A = (�1; : : : ; �m ; � )

B = (�1; : : : ; �m ;  )

A ∈ S

IUT

⊕ \ C1

¬ (1 ∧ 2)
A

A ∈ C2

(1 ∧ 2)
A

′

A

′ = {�′
1; �

′
2 } ∈ C1

�

′
1 :: B1 ⊢ t : �

�

′
2 :: B2 ⊢ t :  

5.13

for �

′
1; �

′
2

IUL

?

m

(�′)? :: t : [A;B ]
x1;:::; xm

A = (�1; : : : ; �m ; � )

B = (�1; : : : ; �m ;  )

A ∈ S

IUT

⊕ \ C

annot transform to

A

′ = {�′
1; �

′
2 } ∈ C1

annot prove

t : [A;B ]
x1;:::; xm

in IUL

?

m

Figure 6.5: Subsets of S

IUT

⊕
and paths from S

IUT

⊕
to IUL

?

m

.



CHAPTER 7

Sequent Calulus IUL

m

and IUT

⊕

We present the logi IUL

m

and the type system IUT

⊕
in sequent alulus style, retaining the additive

harater of their natural dedution presentations. For both the logi and the type system, we show that

the two styles of presentation are equivalent and that the basi natural dedution properties (derivability

properties, et.) hold in the sequent alulus ontext, as well. We also prove that the additive and

multipliative

1

sequent alulus presentations of the type system are equivalent. We �nally elaborate

on how the sequent alulus logi attempts to represent the sequent alulus type system on a logial

level and sketh how the sequent alulus orrespondene between the logi and the type system an be

studied with tools analogous to the ones used to study the natural dedution orrespondene between

the logi and the type system.

7.1 The logi IUL

m

in sequent alulus

Keeping (i) and (ii) of De�nition 4.1 as it is, the sequent alulus logi IUL

m

proves moleules by the

rules displayed in Figure 7.1.

Remark 7.1 (i) In the exhange rule (X), the Γ
i

's have the same ardinality.

(ii) As was the ase in the natural dedution presentation, the (left and right) intersetion and (left

and right) union rules demonstrated in Figure 7.1 are only speial versions of the atual (left and right)

intersetion and (left and right) union rules. The atual (∪L) is meant as follows.

[U1; (Γ1; �1 ; �1); (Γ1; �1 ; �1);U2; (Γ2; �2 ; �2); (Γ2; �2 ; �2); : : : ;Un; (Γn; �n ; �n); (Γn; �n ; �n);Un+1 ]
(∪L)

[U1; (Γ1; �1 ∪ �1 ; �1);U2; (Γ2; �2 ∪ �2 ; �2); : : : ;Un; (Γn; �n ∪ �n ; �n);Un+1 ]

The atual (∩L1),(∩L2),(∩R),(∪R1), and (∪R2) an be �gured from their speial versions in a similar

manner.

The ategorization of rules as global or loal is still aording to whether they a�et all or some atoms

in premise level, respetively. The exhange rule, the impliation rules, and the ut rule are global, while

the intersetion and union rules are loal.

1

We remind the reader that the multipliative sequent alulus version of the type system is studied in Chapter 2.

137
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⊕

(ax)

[(Γ
i

; �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

; �

i

;∆
i

; �
i

)
i

]

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(→L)

[Γ
i

; �

i

→ �

i

; �
i

)
i

]

[(Γ
i

; �

i

; �
i

)
i

]
(→R)

[(Γ
i

; �
i

→ �

i

)
i

]

[U ; (Γ
i

; �

i

; �
i

)
i

;V ]
(∩L1)

[U ; (Γ
i

; �

i

∩ �
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �

i

; �
i

)
i

;V ]
(∩L2)

[U ; (Γ
i

; �

i

∩ �
i

; �
i

)
i

;V ]

[U ; ((Γ
i

; �
i

); (Γ
i

; �
i

))
i

;V ]
(∩R)

[U ; (Γ
i

; �
i

∩ �
i

)
i

;V ]

[U ; ((Γ
i

; �

i

; �
i

); (Γ
i

; �

i

; �
i

))
i

;V ]
(∪L)

[U ; (Γ
i

; �

i

∪ �
i

; �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪R1)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[U ; (Γ
i

; �
i

)
i

;V ]
(∪R2)

[U ; (Γ
i

; �
i

∪ �
i

)
i

;V ]

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(ut)

[(Γ
i

; �
i

)
i

]

Figure 7.1: The logi IUL

m

in sequent alulus style.

The onnetives of the grammar are all additive. This is done by neessity in the ases of intersetion

and union. The laim that atoms in the same moleule should have the same ontext ardinality forbids

a multipliative presentation of the intersetion rules and the left union rule. Considering the left inter-

setion, a multipliative premise [(∆
i

; �
i

)k1 ; (Γi; �i; �i ; �i)
n

1 ] with |∆
i

| = |Γ
i

; �

i

; �

i

| = m+ 2 would give a

onlusion [(∆
i

; �
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ] with |∆
i

| = m+ 2, but |Γ
i

; �

i

∩ �
i

| = m+ 1. Similar arguments
hold for the right intersetion and the left union. Moreover, the intuitionisti laim that atoms should

ontain exatly one formula to the right of \;" forbids a multipliative presentation of the right union;

a multipliative premise [U ; (Γ
i

; �
i

; �

i

)
i

;V ] would no longer belong to an intuitionisti system. On the

other hand, the additive presentation is piked by hoie in the ase of impliation. This is beause the

left impliation an also be given multipliatively with premises [(Γ
i

; �
i

)
i

]; [(∆
i

; �

i

; �
i

)
i

] and onlusion

[(Γ
i

;∆
i

; �

i

→ �

i

; �
i

)
i

]. The ut rule is additive by hoie, as well.

The sequent alulus presentation of IUL

m

is equivalent to the natural dedution presentation of

IUL

m

, given in Chapter 4.

Theorem 7.2 (i) If � :: M in sequent alulus style, there is a �

′ :: M in natural dedution style.

(ii) If � :: M in natural dedution style, there is a �

′ :: M in sequent alulus style.

Proof. For both (i) and (ii), the formal proof is by indution on �.

(i) In pratie, the indutive proof redues to showing that the sequent alulus rules are derivable

in the natural dedution system. The axiom and the exhange rule are ommon in both presentations,

while the sequent alulus right rules orrespond to the natural dedution introdution rules. Hene, it

remains to show the derivability of the left rules and the ut rule in natural dedution.

.

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(→L)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
❀
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[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

]
[4.5℄

[(Γ
i

; �

i

→ �

i

; �
i

→ �

i

)
i

]

(ax)

[(Γ
i

; �

i

→ �

i

; �
i

→ �

i

)
i

]

[(Γ
i

; �
i

)
i

]
[4.5℄

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
(→E)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
(→E)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]

.

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ; �i)
n

1 ]
(∩L1)

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ]
❀

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ; �i)
n

1 ]
(→I)

[(∆
i

; �
i

→  

i

)k1 ; (Γi ; �i → �

i

)n1 ]
[4.5℄

[(∆
i

; �

i

; �
i

→  

i

)k1 ; (Γi; �i ∩ �i ; �i → �

i

)n1 ]

(ax)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∩ �i ; �i ∩ �i)
n

1 ]
(∩E1)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ]
(→E)

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∩ �i ; �i)
n

1 ]

.

[(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
(∪L)

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∪ �i ; �i)
n

1 ]
❀

(ax)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∪ �i ; �i ∪ �i)
n

1 ]

[(∆
i

; �

i

;  
i

)k1 ; ((Γi; �i ; �i); (Γi; �i ; �i))
n

1 ]
[4.5℄

[(∆
i

; �

i

; �

i

;  
i

)k1 ; ((Γi; �i; �i ∪ �i ; �i); (Γi; �i; �i ∪ �i ; �i))
n

1 ]
(X)

[(∆
i

; �

i

; �

i

;  
i

)k1 ; ((Γi; �i ∪ �i; �i ; �i); (Γi; �i ∪ �i; �i ; �i))
n

1 ]
(∪E)′

[(∆
i

; �

i

;  
i

)k1 ; (Γi; �i ∪ �i ; �i)
n

1 ]

.

[(Γ
i

; �
i

)
i

] [(Γ
i

; �

i

; �
i

)
i

]
(ut)

[(Γ
i

; �
i

)
i

]
❀

[(Γ
i

; �

i

; �
i

)
i

]
(→I)

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]

(ii) The indutive proof redues to showing that the natural dedution rules are derivable in the sequent

alulus system. Sine the introdution rules translate to the orresponding right rules, it remains to

show the derivability of the elimination rules in sequent alulus.

.

[(Γ
i

; �
i

→ �

i

)
i

] [(Γ
i

; �
i

)
i

]
(→E)

[(Γ
i

; �
i

)
i

]
❀ [(Γ
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i

→ �

i

)
i

]

[(Γ
i

; �
i

)
i

]
(ax)

[(Γ
i

; �

i

; �
i

)
i

]
(→L)

[(Γ
i

; �

i

→ �

i

; �
i

)
i

]
(ut)

[(Γ
i

; �
i

)
i

]

.

[(∆
i

; �
i

)k1 ; (Γi ; �i ∩ �i)
n

1 ]
(∩E1)

[(∆
i

; �
i

)k1 ; (Γi ; �i)
n

1 ]
❀ [(∆

i

; �
i

)k1 ; (Γi ; �i ∩ �i)
n

1 ]

(ax)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i �i)
n

1 ]
(∩L1)

[(∆
i

; �

i

; �
i

)k1 ; (Γi; �i ∩ �i �i)
n

1 ]
(ut)

[(∆
i

; �
i

)k1 ; (Γi ; �i)
n

1 ]

.
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; �
i

∪ �
i

)
i

] [((Γ
i
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i

; �
i

); (Γ
i
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i

; �
i

))
i

]
(∪E)

[(Γ
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i

)
i

]
❀ [(Γ

i
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i

∪ �
i

)
i

]

[((Γ
i
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i

; �
i

); (Γ
i
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i
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i

]
(∪L)

[(Γ
i
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i

∪ �
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; �
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)
i

]
(ut)

[(Γ
i

; �
i

)
i

]
⊣
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Following the equivalene of the two presentations of the logi, we expet that the propositions

on derivability, shown in Chapter 4 for the natural dedution presentation (Propositions 4.5, 4.6, 4.10,

and 4.11), also hold for the sequent alulus presentation. The next two propositions show that weakening

and ontration are derivable.

Proposition 7.3 Weakening is derivable: if � :: [(Γ
i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. Either by Theorem 7.2 and Proposition 4.5 or diretly by indution on �. We show three indutive

ases of the diret proof.

.

�0 :: [(Γ
i

; �
i

)
i

] �1 :: [(Γ
i
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)
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]
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� :: [(Γ
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; �
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)
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]
❀
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]
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1 ]
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1 ]
❀
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�
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] [h℄
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′
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)
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⊣

Proposition 7.4 Contration is derivable: if � :: [(Γ
i

; �

i

; �

i

; �
i

)
i

], there exists a �

′ :: [(Γ
i

; �

i

; �
i

)
i

].

Proof. Either by Theorem 7.2 and Proposition 4.6 or diretly through the ut rule.

(ax)

[(Γ
i

; �

i

; �
i

)
i

] � :: [(Γ
i

; �

i

; �

i

; �
i

)
i

]
(ut)

�

′ :: [(Γ
i

; �

i

; �
i

)
i

]

It is easy to hek that, if we hose a multipliative ut rule, the derivability of ontration through

ut would fail. A proof by indution on � would also fail. ⊣

Before showing that pruning and doubling are derivable, we need to establish the exhange of atoms

within provable moleules. The de�nitions of tree and derivation height remain as given in 4.7 and 4.8,

respetively.

Proposition 7.5 If � :: [U ;A;B;V ], there exists a �

′ :: [U ;B;A;V ] with T ′ = T .
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Proof. By indution on �. We show two harateristi general ases of the indution step.

. A global rule (R): e.g. (→L) or (ut)

�0 :: [U0;A0;B0;V0] �1 :: [U1;A1;B1;V1]
(R)

� :: [U ;A;B;V ]

where |U0| = |U1| = |U|

The IH gives a �

′
0 :: [U0;B0;A0;V0] with T

′
0 = T0 and a �

′
1 :: [U1;B1;A1;V1] with T

′
1 = T1. Applying

(R) to �

′
0 and �

′
1, we get a �

′ :: [U ;B;A;V ] with T ′ = T .

. A loal rule (R): e.g. (∩L) or (∪R)

Case 1:

�0 :: [U0;A;B;V0]
(R)

� :: [U ;A
R

;B
R

;V ]

where |U0| = |U|, and A
R

and B
R

derive from A and B, respetively, by (R)

The IH gives a �

′
0 :: [U0;B;A;V0] with T

′
0 = T0. Applying (R) to �

′
0, we get a �

′ :: [U ;B
R

;A
R

;V ]
with T

′ = T .

Case 2:

�0 :: [U0;A;B;V0]
(R)

� :: [U ;A
R

;B;V ]

where |U0| = |U|

The IH yields a �

′
0 :: [U0;B;A;V0] with T

′
0 = T0. Applying (R) to �

′
0, we obtain a �

′ :: [U ;B;A
R

;V ]
with T

′ = T .

Case 3:

�0 :: [U0(n; C
k);A;B;V0]

(R)

� :: [U(n; Ck
R

);A;B;V ]

where U0(n; Ck) denotes a sequene U0 of n atoms, whih ontains an atom C at position k 6 n

and U(n; Ck
R

) denotes a sequene U of n atoms, whih ontains an atom C
R

at position k

The IH gives a �

′
0 :: [U0(n; Ck);B;A;V0] with T

′
0 = T0. By (R), we then get a �

′ :: [U(n; Ck
R

);B;A;V ]
with T

′ = T .

The loal rules of (∩R) and (∪L) are dealt with as (∩I) in the proof of 4.10. ⊣

Proposition 7.6 (i) Pruning is derivable: if � :: [U ;V ], there exists a �

′ :: [U ] with h′ 6 h.

(ii) Doubling is derivable: if � :: [U ;A ], there exists a �

′ :: [U ; 2A ] with T ′ = T .

Proof. (i) By indution on �. We demonstrate two typial general ases of the indution step.

. A global rule (R): e.g. (X) or (→R)

�0 :: [U0;V0]
(R)

� :: [U ;V ]

where |U0| = |U|

The IH gives a �

′
0 :: [U0] with h

′
0 6 h0. By (R), we obtain a �

′ :: [U ] with h′ = h

′
0 + 1 6 h0 + 1 = h.
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The global rules of (→L) and (ut) are dealt with as (→E) in the proof of 4.11(i).

. A loal rule (R): e.g. (∩L) or (∪R)

Case 1:

�0 :: [U0(n;A
k);V0]

(R)

� :: [U(n;Ak
R

);V ]

The IH gives a �

′
0 :: [U0(n;A

k)] with h′0 6 h0. Applying (R) to �

′
0, we obtain a �

′ :: [U(n;Ak

R

)] with
h

′ = h

′
0 + 1 6 h0 + 1 = h.

Case 2:

�0 :: [U ;V0(n;A
k)]

(R)

� :: [U ;V(n;Ak
R

)]

The IH gives a �

′
0 :: [U ] with h′0 6 h0. It is �

′ = �

′
0 and h

′ = h

′
0 < h.

The loal rules of (∩R) and (∪L) are dealt with as (∩I) in the proof of 4.11(i).

(ii) By indution on �. We exhibit two typial general ases of the indution step.

. A global rule (R): e.g. (→L) or (ut)

�0 :: [U0;A0] �1 :: [U1;A1]
(R)

� :: [U ;A ]

The IH gives a �

′
0 :: [U0; 2A0] with T

′
0 = T0 and a �

′
1 :: [U1; 2A1] with T

′
1 = T1. Applying (R) to �

′
0

and �

′
1, we obtain a �

′ :: [U ; 2A ] with T ′ = T .

. A loal rule (R): e.g. (∩L) or (∪R)

Case 1:

�0 :: [U0;A ]
(R)

� :: [U ;A
R

]

The IH gives a �

′
0 :: [U0; 2A ] with T ′

0 = T0. By (R), we then get a �

′ :: [U ; 2A
R

] with T ′ = T .

Case 2:

�0 :: [U0(n;B
k);A ]

(R)

� :: [U(n;Bk
R

);A ]

The IH yields a �

′
0 :: [U0(n;Bk); 2A ] with T ′

0 = T0. Applying (R) to �

′
0, we get a �

′ :: [U(n;Bk
R

); 2A ]
with T

′ = T .

The loal rules of (∩R) and (∪L) are dealt with as (∩I) in the proof of 4.11(ii). In these two ases,

we need to use Proposition 7.5. ⊣

Remark 7.7 In the sequent alulus ontext, the following alternative phrasings for the derivability of

weakening and ontration are provable.

(i) Weakening is derivable: if � :: [(Γ
i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same ardinality and the

∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

].
(ii) Contration is derivable: if � :: [(Γ

i

; �

i

; �

i

;∆
i

; �
i

)
i

], where the Γ
i

's have the same ardinality and

the ∆
i

's are non-empty, there exists a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

].
Compared to the natural dedution alternative phrasings in Remark 4.12, the onlusion that T

′ = T has

been removed from both (i) and (ii).
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For (i), the proof is by indution on �. A subase of the (→L) ase, shown below, illustrates why a

onlusion that T

′ = T is no longer attainable.

.

�0 :: [(Γ′
i

; �

i

; �
i

)
i

] �1 :: [(Γ′
i

; �

i

; �

i

; �
i

)
i

]
(→L)

� :: [(Γ
i

= (Γ′
i

; �

i

);∆
i

= �

i

→ �

i

; �
i

)
i

]

The indution hypothesis gives a �

′
0 :: [(Γ′

i

; �

i

; �

i

; �
i

)
i

] and a �′
1 :: [(Γ′

i

; �

i

; �

i

; �

i

; �
i

)
i

]. We then obtain

a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

], as follows.

�

′
0 :: [(Γ′

i

; �

i

; �

i

; �
i

)
i

]
(X)

[(Γ′
i

; �

i

; �

i

; �
i

)
i

]
�

′
1 :: [(Γ′

i

; �

i

; �

i

; �

i

; �
i

)
i

]
(→L)

�

′ :: [(Γ
i

= (Γ′
i

; �

i

); �
i

;∆
i

= �

i

→ �

i

; �
i

)
i

]

Even if we assume that T

′
0 = T0 and T

′
1 = T1, the exhange inferene forbids a onlusion that T

′ = T .

For (ii), the proof is by indution on �, with the aid of Proposition 7.4. We show the same subase

of the (→L) ase below.

.

�0 :: [(Γ
i

; �

i

; �

i

; �
i

)
i

] �1 :: [(Γ
i

; �

i

; �

i

; �

i

; �
i

)
i

]
(→L)

� :: [(Γ
i

; �

i

; �

i

;∆
i

= �

i

→ �

i

; �
i

)
i

]

By 7.4, there is a �

′
0 :: [(Γ

i

; �

i

; �
i

)
i

], while the indution hypothesis gives a �

′
1 :: [(Γ

i

; �

i

; �

i

; �
i

)
i

].
Applying (→L) to �′

0 and �

′
1, we obtain a �

′ :: [(Γ
i

; �

i

;∆
i

; �
i

)
i

]. Even if we assume that T

′
1 = T1, the

fat that T

′
0 6= T0 (see the proof of 7.4) forbids a onlusion that T

′ = T .

If the ∆
i

's are empty in (i) and (ii), we fall bak to Propositions 7.3 and 7.4, respetively.

Remark 7.8 Proposition 4.4 does not hold in the sequent alulus ontext, i.e. not every sequent alulus

IUL

m

-derivation has a anonial form. This is beause the exhange rule does not always ommute with

a left rule, as shown below.

[(Γ
i

; �

i

; �
i

)
i

] [(Γ
i

; �

i

; �

i

; �
i

)
i

]
(→L)

[(Γ
i

; �

i

; �

i

→ �

i

; �
i

)
i

]
(X)

[(Γ
i

; �

i

→ �

i

; �

i

; �
i

)
i

]

❀

[(Γ
i

; �

i

; �
i

)
i

]
. . . . . . . . . . . . . .

(X) ×
[(Γ

i

; �

i

; �

i

; �
i

)
i

]
. . . . . . . . . . . . . . . . . .

(X) ×

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(→L) ×

The formula �

i

→ �

i

, whih is to be exhanged with �

i

, is not yet formed in the premises of (→L);

therefore, an (X)-appliation involving �

i

and �

i

→ �

i

annot be performed before the (→L)-appliation

introduing �

i

→ �

i

.

Having ompleted the sequent alulus presentation of the logi, we move on to the additive sequent

alulus presentation of the type system.
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(ax)

B; x : � ⊢ x : �

B ⊢ t : � B; x : � ⊢ u : �
(→L)

B; y : � → � ⊢ u[yt=x] : �

B; x : � ⊢ t : �
(→R)

B ⊢ �x: t : � → �

B; x : � ⊢ t : �
(∩L1)

B; x : � ∩ � ⊢ t : �

B; x : � ⊢ t : �
(∩L2)

B; x : � ∩ � ⊢ t : �
B ⊢ t : � B ⊢ t : �

(∩R)
B ⊢ t : � ∩ �

B; x : � ⊢ t : � B; x : � ⊢ t : �
(∪L)

B; x : � ∪ � ⊢ t : �
B ⊢ t : �

(∪R1)

B ⊢ t : � ∪ �
B ⊢ t : �

(∪R2)

B ⊢ t : � ∪ �

B ⊢ t : � B; x : � ⊢ u : �
(ut)

B ⊢ u[t=x] : �

Figure 7.2: The type system IUT

⊕
in sequent alulus style.

7.2 The type system IUT

⊕
in sequent alulus

The type system IUT

⊕
in sequent alulus style is the sequent alulus type system IUT

ù

of Chapter 2,

presented additively and without the (ù)-rule. The additive presentation serves the proof of (restrited)

orrespondene theorems between it and the additive sequent alulus logi (see Setion 7.3). It assigns

types built by impliation, intersetion, and union to terms of the untyped �-alulus aording to the

rules in Figure 7.2. As was emphasized for IUT

ù

in Chapter 2, the new variable in the onlusion of an

(→L) inferene is fresh with respet to the derivations proving the premises.

The additive sequent alulus IUT

⊕
of the urrent setion is equivalent to the additive natural dedu-

tion IUT

⊕
of Chapter 4. We remind the reader that we denote V

�

(or just V ) the set of all term variables

appearing in a derivation � of the type system.

Theorem 7.9 (i) If � :: B ⊢ t : � in sequent alulus and x1; : : : ; xn 6∈ V , there is a �

′ :: B ⊢ t : � in

natural dedution, suh that x1; : : : ; xn 6∈ V

′ ⊇ V .

(ii) If � :: B ⊢ t : � in natural dedution, there is a �

′ :: B ⊢ t : � in sequent alulus, suh that

V

′ ⊇ V .

Proof. (i) By indution on �.

Base: If � :: B′
; x : � ⊢ x : � is an axiom, then �

′ = � and x1; : : : ; xn 6∈ V

′ = V .

Indution step: Sine the right rules translate to the orresponding introdution rules, we demonstrate

the ut ase and the ases of left rules.

.

�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(ut)

� :: B ⊢ u[t=x] : �
❀



7.2 The type system IUT

⊕
in sequent alulus 145

�

′
0 :: B ⊢ t : � [h℄

(∪I)
B ⊢ t : � ∪ � �

′
1 :: B; x : � ⊢ u : � [h℄ �

′
1 :: B; x : � ⊢ u : � [h℄

(∪E)
�

′ :: B ⊢ u[t=x] : �

If x1; : : : ; xn 6∈ V = V0 ∪ V1, the IH yields that x1; : : : ; xn 6∈ V

′ = V

′
0 ∪ V ′

1 ⊇ V0 ∪ V1 = V .

.

�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(→L)

� :: B; y : � → � ⊢ u[yt=x] : �
❀

(ax)

B; y : � → � ⊢ y : � → �

�

′
0 :: B ⊢ t : � [h℄

[4.14(ii)℄

�

′′
0 :: B; y : � → � ⊢ t : �

(→E)

B; y : � → � ⊢ yt : �

�

′
1 :: B; x : � ⊢ u : � [h℄

[4.14(ii)℄

�

′′
1 :: B; y : � → �; x : � ⊢ u : �

(∪IE)
�

′ :: B; y : � → � ⊢ u[yt=x] : �

If x1; : : : ; xn 6∈ V , then x1; : : : ; xn; y 6∈ V0 ∪ V1. The IH gives that x1; : : : ; xn; y 6∈ V

′
0 ∪ V ′

1 ⊇ V0 ∪ V1.
Sine y 6∈ V

′
0 ∪ V ′

1 , we an apply 4.14(ii) to �

′
0 and �

′
1 to get �

′′
0 and �

′′
1 , respetively, suh that

x1; : : : ; xn 6∈ V

′ = V

′′
0 ∪ V ′′

1 = V

′
0 ∪ V ′

1 ∪ {y} ⊇ V0 ∪ V1 ∪ {y} = V

.

�0 :: B; x : � ⊢ t : �
(∩L1)

� :: B; x : � ∩ � ⊢ t : �
❀

(ax)

B; x : � ∩ � ⊢ x : � ∩ �
(∩E1)

B; x : � ∩ � ⊢ x : �

�

′
0 :: B; x : � ⊢ t : � [h℄

[4.14(i)℄

�

′′
0 :: B; y : � ⊢ t[y=x] : �

[4.14(ii)℄

�

′′′
0 :: B; x : � ∩ �; y : � ⊢ t[y=x] : �

(∪IE)

�

′ :: B; x : � ∩ � ⊢ (t[y=x])[x=y]
y 6∈FV (t)

= t : �

If x1; : : : ; xn 6∈ V = V0, the IH gives that x1; : : : ; xn 6∈ V

′
0 ⊇ V0. If y is suh that x1; : : : ; xn 6= y 6∈ V

′
0 ,

we an apply 4.14(i) to �

′
0 to get �

′′
0 with x1; : : : ; xn; x 6∈ V

′′
0 = (V ′

0 \ {x}) ∪ {y}. Sine x 6∈ V

′′
0 , we an

further apply 4.14(ii) to �

′′
0 to get �

′′′
0 with x1; : : : ; xn 6∈ V

′′′
0 = V

′′
0 ∪ {x} = V

′
0 ∪ {y}. Sine y 6∈ V

′
0 ⊇ V0,

we �nally get that x1; : : : ; xn 6∈ V

′ = V

′′′
0 ⊇ V0 ∪ {y} ! V0 = V .

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : � ⊢ t : �
(∪L)

� :: B; x : � ∪ � ⊢ t : �
❀

(ax)

B; x : � ∪ � ⊢ x : � ∪ �

�

′
0 :: B; x : � ⊢ t : � [h℄

[4.14(i)℄

�

′′
0 :: B; y : � ⊢ t[y=x] : �

[4.14(ii)℄

�

′′′
0 :: B; x : � ∪ �; y : � ⊢ t[y=x] : �

�

′
1 :: B; x : � ⊢ t : � [h℄

[4.14(i)℄

�

′′
1 :: B; y : � ⊢ t[y=x] : �

[4.14(ii)℄

�

′′′
1 :: B; x : � ∪ �; y : � ⊢ t[y=x] : �

(∪E)

�

′ :: B; x : � ∪ � ⊢ (t[y=x])[x=y]
y 6∈FV (t)

= t : �

If x1; : : : ; xn 6∈ V = V0 ∪ V1, the IH gives that x1; : : : ; xn 6∈ V

′
0 ∪ V

′
1 ⊇ V0 ∪ V1. If y is suh that

x1; : : : ; xn 6= y 6∈ V

′
0 ∪ V ′

1 , we an apply 4.14(i) to �

′
0 and �

′
1 to get �

′′
0 and �

′′
1 , respetively, suh that

x1; : : : ; xn; x 6∈ V

′′
0 ∪V ′′

1 = ((V ′
0 ∪V

′
1) \ {x})∪{y}. Sine x 6∈ V

′′
0 ∪V ′′

1 , we an apply 4.14(ii) to �

′′
0 and �

′′
1

to get �

′′′
0 and �

′′′
1 , respetively, suh that x1; : : : ; xn 6∈ V

′′′
0 ∪V ′′′

1 = V

′′
0 ∪V ′′

1 ∪{x} = V

′
0 ∪V

′
1 ∪{y}. Sine

y 6∈ V

′
0 ∪ V ′

1 ⊇ V0 ∪ V1, we �nally get that x1; : : : ; xn 6∈ V

′ = V

′′′
0 ∪ V ′′′

1 ⊇ V0 ∪ V1 ∪ {y} ! V0 ∪ V1 = V .
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(ii) By indution on �.

Base: If � :: B′
; x : � ⊢ x : � is an axiom, then �

′ = � and V

′ = V .

Indution step: Sine the introdution rules orrespond to the right rules, we show the ases of

elimination rules.

.

�0 :: B ⊢ t : � → � �1 :: B ⊢ u : �
(→E)

� :: B ⊢ tu : �
❀

�

′
0 :: B ⊢ t : � → � [h℄

�

′
1 :: B ⊢ u : � [h℄

(ax)

B; x : � ⊢ x : �
(→L)

B; y : � → � ⊢ yu : �
(ut)

�

′ :: B ⊢ tu : �

It is V

′ = V

′
0 ∪ V

′
1 ∪{x; y}

[h℄

⊇ V0 ∪V1 ∪{x; y} ⊇ V0 ∪ V1 = V . [Example 7.10 illustrates one ase where

V

′ ! V and another ase where V

′ = V .℄

.

�0 :: B ⊢ t : � ∩ �
(∩E1)

� :: B ⊢ t : �
❀

�

′
0 :: B ⊢ t : � ∩ � [h℄

(ax)

B; x : � ⊢ x : �
(∩L1)

B; x : � ∩ � ⊢ x : �
(ut)

�

′ :: B ⊢ t : �

It is V

′ = V

′
0 ∪ {x}

[h℄

⊇ V0 ∪ {x} ⊇ V0 = V .

.

�0 :: B ⊢ t : � ∪ � �1 :: B; x : � ⊢ u : � �2 :: B; x : � ⊢ u : �
(∪E)

� :: B ⊢ u[t=x] : �
❀

�

′
0 :: B ⊢ t : � ∪ � [h℄

�

′
1 :: B; x : � ⊢ u : � [h℄ �

′
2 :: B; x : � ⊢ u : � [h℄

(∪L)
B; x : � ∪ � ⊢ u : �

(ut)

�

′ :: B ⊢ u[t=x] : �

It is V

′ = V

′
0 ∪ V ′

1 ∪ V ′
2

[h℄

⊇ V0 ∪ V1 ∪ V2 = V . ⊣

Example 7.10 (i) Consider the following natural dedution derivation � :: z : � → �; w : � ⊢ zw : � .

�0 :: z : � → �; w : � ⊢ z : � → � �1 :: z : � → �; w : � ⊢ w : �
(→E)

� :: z : � → �; w : � ⊢ zw : �

Following the method in the proof of 7.9(ii), derivation � transforms to the following sequent alulus

derivation �

′ :: z : � → �; w : � ⊢ zw : � .

�

′
0 :: z : � → �; w : � ⊢ z : � → �

�

′
1 :: z : � → �; w : � ⊢ w : � z : � → �; w : �; x : � ⊢ x : �

(→L)

z : � → �; w : �; y : � → � ⊢ yw : �
(ut)

�

′ :: z : � → �; w : � ⊢ zw : �
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The de�nition of \basis" implies that x 6= z; w and the de�nition of (→L) implies that y 6= z; w; x. Hene,

it is V

′ = {z; w; x; y} ! {z; w} = V .

(ii) Consider the following natural dedution derivation � :: B = { z : (�∩�)∪ (�∩ �) } ⊢ z (�x: x) : �,
where � = (� → �) → �.

B ⊢ z : (� ∩ �) ∪ (� ∩ �)

B; y : � ∩ � ⊢ y : � ∩ �
(∩E2)

B; y : � ∩ � ⊢ y : �

B; y : � ∩ � ⊢ y : � ∩ �
(∩E1)

B; y : � ∩ � ⊢ y : �
(∪E)

�0 :: B ⊢ z : �

B; x : � ⊢ x : �
(→I)

�1 :: B ⊢ �x: x : � → �

(→E)

� :: B = { z : (� ∩ �) ∪ (� ∩ �) } ⊢ z (�x: x) : �

Following the method in the proof of 7.9(ii), derivation � transforms to the following sequent alulus

derivation �

′ :: B = { z : (� ∩ �) ∪ (� ∩ �) } ⊢ z (�x: x) : �.

B ⊢ z : (� ∩ �) ∪ (� ∩ �)

see below

�

′
01 :: B; y : (� ∩ �) ∪ (� ∩ �) ⊢ y : �

(ut)

�

′
0 :: B ⊢ z : �

B; x : � ⊢ x : �
(→R)

�

′
1 :: B ⊢ �x: x : � → � B; x : � ⊢ x : �

(→L)

B; y : � ⊢ y (�x: x) : �
(ut)

�

′ :: B = { z : (� ∩ �) ∪ (� ∩ �) } ⊢ z (�x: x) : �

B; y : � ∩ � ⊢ y : � ∩ �

B; y : � ∩ �; x : � ⊢ x : �
(∩L2)

B; y : � ∩ �; x : � ∩ � ⊢ x : �
(ut)

B; y : � ∩ � ⊢ y : �

B; y : � ∩ � ⊢ y : � ∩ �

B; y : � ∩ �; x : � ⊢ x : �
(∩L1)

B; y : � ∩ �; x : � ∩ � ⊢ x : �
(ut)

B; y : � ∩ � ⊢ y : �
(∪L)

�

′
01 :: B; y : (� ∩ �) ∪ (� ∩ �) ⊢ y : �

The premises B; y : � ∩ � ⊢ y : � and B; y : � ∩ � ⊢ y : � of (∪L) an also be derived from the axiom

B; y : � ⊢ y : � by (∩L2) and (∩L1), respetively; in fat, this is the easiest way to derive them in sequent

alulus. However, we hoose to stik to the method of 7.9(ii) in obtaining �

′
from �. We observe that it

is V

′ = {z; y; x} = V .

The equivalene of the two presentations of IUT

⊕
implies that the derivability of renaming, weakening,

strengthening, and ontration, shown in Chapter 4 for the natural dedution presentation, must also

hold for the sequent alulus presentation. We next elaborate on these derivabilities and explain how the

derivability of ontration in sequent alulus di�ers qualitatively and quantitatively from the derivability

of ontration in natural dedution.

Proposition 7.11 (i) (Renaming) If � :: B; x : � ⊢ t : � and y is fresh with respet to �, there exists a

�

′ :: B; y : � ⊢ t[y=x] : � , suh that V

′ = (V \ {x}) ∪ {y} and T

′ = T .

(ii) (Weakening) If � :: B ⊢ t : � and x is fresh with respet to �, there exists a �

′ :: B; x : � ⊢ t : � ,
suh that V

′ = V ∪ {x} and T

′ = T .

(iii) (Strengthening) If � :: B; x : � ⊢ t : � and x 6∈ FV (t), there exists a �

′ :: B ⊢ t : � , suh that

x 6∈ V

′  V and h

′ 6 h.

(iv) (Contration) If � :: B; x : �; y : � ⊢ t : � , there exists a �

′ :: B; x : � ⊢ t[x=y] : � .
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Proof. Throughout the proof, unless otherwise stated, it is V0 = V

�0 and V1 = V

�1 .

(i) By indution on �. We demonstrate three ases of the indution step.

.

�0 :: B; z : � ⊢ t : � �1 :: B; z : �; w : � ⊢ u : �
(→L)

� :: B; z : �; x : � → � ⊢ u[xt=w] : �

Case 1: rename x to y. We have that V = V0 ∪ V1 ∪ {x}. Sine y is fresh with respet to �, it is

also fresh with respet to �0 and �1; hene, we an apply (→L) to �0 and �1 with y in plae of x to

get a �

′ :: B; z : �; y : � → � ⊢ u[yt=w] : �. Sine x 6∈ FV (t) ∪ FV (u), it is u[yt=w] = (u[xt=w])[y=x].
Moreover, it it V

′ = V0 ∪ V1 ∪ {y} = (V \ {x}) ∪ {y} and T

′ = T .

Case 2: rename z to y. If V

�0 = V0 ∪{z} and V
�1 = V1 ∪{z}, then V = V0 ∪V1 ∪{z; x}. The IH gives

a �

′
0 :: B; y : � ⊢ t[y=z] : �, suh that V

′
0 = V0 ∪ {y} and T

′
0 = T0, and a �

′
1 :: B; y : �; w : � ⊢ u[y=z] : �,

suh that V

′
1 = V1 ∪ {y} and T

′
1 = T1. Sine x 6∈ V0 ∪ V1 [by de�nition of the (→L) whih yields �℄ and

x 6= y [by hypothesis℄, we have that x 6∈ V0 ∪ V1 ∪ {y} = V

′
0 ∪ V ′

1 and we an apply an x-introduing

(→L) to �′
0 and �

′
1 to get a �

′ :: B; y : �; x : � → � ⊢ (u[y=z])[x(t[y=z])=w] = (u[xt=w])[y=z] : �. It is

V

′ = V

′
0 ∪ V ′

1 ∪ {x} = V0 ∪ V1 ∪ {y; x} = (V \ {z}) ∪ {y} and T ′ = T .

.

�0 :: B; z : �; x : � ⊢ t : � �1 :: B; z : �; x : � ⊢ t : �
(∪L)

� :: B; z : �; x : � ∪ � ⊢ t : �

Case 1: rename x to y. If V

�0 = V0 ∪{x} and V
�1 = V1 ∪{x}, then V = V0 ∪V1 ∪{x}. The IH gives a

�

′
0 :: B; z : �; y : � ⊢ t[y=x] : �, suh that V ′

0 = V0∪{y} and T ′
0 = T0, and a �

′
1 :: B; z : �; y : � ⊢ t[y=x] : �,

suh that V

′
1 = V1 ∪ {y} and T ′

1 = T1. By (∪L), we then obtain a �

′ :: B; z : �; y : � ∪ � ⊢ t[y=x] : �, suh
that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \ {x}) ∪ {y} and T ′ = T .

Case 2: rename z to y. If V

�0 = V0 ∪ {z} and V
�1 = V1 ∪ {z}, then V = V0 ∪ V1 ∪ {z}. The IH gives a

�

′
0 :: B; y : �; x : � ⊢ t[y=z] : �, suh that V ′

0 = V0∪{y} and T
′
0 = T0, and a �

′
1 :: B; y : �; x : � ⊢ t[y=z] : �,

suh that V

′
1 = V1 ∪ {y} and T

′
1 = T1. By (∪L), we then get a �

′ :: B; y : �; x : � ∪ � ⊢ t[y=z] : �, suh
that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \ {z}) ∪ {y} and T

′ = T .

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : �; z : � ⊢ u : �
(ut)

� :: B; x : � ⊢ u[t=z] : �

If V

�0 = V0∪{x} and V
�1 = V1∪{x}, then V = V0∪V1∪{x}. The IH gives a �

′
0 :: B; y : � ⊢ t[y=x] : � ,

suh that V

′
0 = V0 ∪ {y} and T

′
0 = T0, and a �

′
1 :: B; y : �; z : � ⊢ u[y=x] : �, suh that V

′
1 = V1 ∪ {y}

and T

′
1 = T1. Applying (ut) to �

′
0 and �

′
1, we get a �

′ :: B; y : � ⊢ (u[y=x])[t[y=x]=z] = (u[t=z])[y=x] : �,
suh that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {y} = (V \ {x}) ∪ {y} and T ′ = T .

(ii) By indution on �. We develop the most notable ases of the indution step.

.

�0 :: B ⊢ t : � �1 :: B; z : � ⊢ u : �
(→L)

� :: B; y : � → � ⊢ u[yt=z] : �

It is V = V0 ∪V1 ∪{y}. The IH provides a �

′
0 :: B; x : � ⊢ t : � , suh that V

′
0 = V0 ∪{x} and T ′

0 = T0,

and a �

′
1 :: B; z : �; x : � ⊢ u : �, suh that V

′
1 = V1 ∪ {x} and T

′
1 = T1. Sine y 6∈ V0 ∪ V1 [by de�nition

of the (→L) whih yields �℄ and y 6= x [by hypothesis℄, we have that y 6∈ V0 ∪ V1 ∪ {x} = V

′
0 ∪ V

′
1 and we

an apply a y-introduing (→L) to �′
0 and �

′
1 to get a �

′ :: B; x : �; y : � → � ⊢ u[yt=z] : �, suh that

V

′ = V

′
0 ∪ V ′

1 ∪ {y} = V0 ∪ V1 ∪ {x; y} = V ∪ {x} and T

′ = T .
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.

�0 :: B; y : � ⊢ t : � �1 :: B; y : � ⊢ t : �
(∪L)

� :: B; y : � ∪ � ⊢ t : �

It is V = V0 ∪ V1. The IH gives a �

′
0 :: B; y : �; x : � ⊢ t : �, suh that V

′
0 = V0 ∪ {x} and T

′
0 = T0,

and a �

′
1 :: B; y : �; x : � ⊢ t : �, suh that V

′
1 = V1 ∪ {x} and T

′
1 = T1. Applying (∪L) to �

′
0 and �

′
1, we

get a �

′ :: B; y : � ∪ �; x : � ⊢ t : �, suh that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {x} = V ∪ {x} and T

′ = T .

.

�0 :: B ⊢ t : � �1 :: B; y : � ⊢ u : �
(ut)

� :: B ⊢ u[t=y] : �

It is V = V0 ∪ V1. The IH yields a �

′
0 :: B; x : � ⊢ t : � , suh that V

′
0 = V0 ∪ {x} and T

′
0 = T0,

and a �

′
1 :: B; y : �; x : � ⊢ u : �, suh that V

′
1 = V1 ∪ {x} and T

′
1 = T1. By (ut), we then obtain a

�

′ :: B; x : � ⊢ u[t=y] : �, suh that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 ∪ {x} = V ∪ {x} and T

′ = T .

(iii) By indution on �. We show three harateristi ases of the indution step.

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : �; z : � ⊢ u : �
(→L)

� :: B; x : �; y : � → � ⊢ u[yt=z] : �

Case 1: y 6∈ FV (u[yt=z]) ⇒ z 6∈ FV (u) ⇒ u[yt=z] = u. Applying the IH to �1, we obtain a derivation

�

′ :: B; x : � ⊢ u[yt=z] : �, suh that V

′  V1  V0 ∪ V1 ∪ {y} = V and h

′ 6 h1 < h. Sine y 6∈ V1 ! V

′
,

we have that y 6∈ V

′  V .

Case 2: x 6∈ FV (u[yt=z]). We distinguish two subases.

Subase 2i: z 6∈ FV (u) ⇒ u[yt=z] = u. The IH on �1 yields a �
′
1 :: B; x : � ⊢ u : �, suh that V

′
1  V1

and h

′
1 6 h1. Sine h

′
1 6 h1 < h and x 6∈ FV (u[yt=z] = u), the IH on �

′
1 gives a �

′′
1 :: B ⊢ u[yt=z] : �,

suh that x 6∈ V

′′
1  V

′
1 and h

′′
1 6 h

′
1. Sine y 6∈ V1 ! V

′′
1 , we have that y 6∈ V

′′
1 , i.e. that y is fresh with

respet to �

′′
1 , so that (ii) gives a �

′ :: B; y : � → � ⊢ u[yt=z] : �, suh that V

′ = V

′′
1 ∪ {y} and T

′ = T

′′
1 .

It is x 6∈ V

′′
1 and x 6= y, so that x 6∈ V

′ = V

′′
1 ∪ {y}  V1 ∪ {y} ⊆ V0 ∪ V1 ∪ {y} = V . Moreover, sine

T

′ = T

′′
1 , it is h

′ = h

′′
1 < h.

Subase 2ii: z ∈ FV (u) ⇒ x 6∈ FV (t) and x 6∈ FV (u). The IH on �0 gives a �
′
0 :: B ⊢ t : � , suh that

x 6∈ V

′
0  V0 and h

′
0 6 h0, while the IH on �1 gives a �

′
1 :: B; z : � ⊢ u : �, suh that x 6∈ V

′
1  V1 and

h

′
1 6 h1. Sine y 6∈ V0∪V1 ! V

′
0 ∪V

′
1 , we have that y 6∈ V

′
0 ∪V

′
1 and we an apply a y-introduing (→L) to

�

′
0 and �

′
1 to get a �

′ :: B; y : � → � ⊢ u[yt=z] : �, suh that x 6∈ V

′ = V

′
0 ∪ V

′
1 ∪ {y}  V0 ∪ V1 ∪ {y} = V

and h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

.

�0 :: B; x : �; y : � ⊢ t : � �1 :: B; x : �; y : � ⊢ t : �
(∪L)

� :: B; x : �; y : � ∪ � ⊢ t : �

Case 1: y 6∈ FV (t). The IH on �0 gives a �

′ :: B; x : � ⊢ t : �, suh that y 6∈ V

′  V0 ⊆ V0 ∪ V1 = V

and h

′ 6 h0 < h.

Case 2: x 6∈ FV (t). The IH gives a �

′
0 :: B; y : � ⊢ t : �, suh that x 6∈ V

′
0  V0 and h

′
0 6 h0, and a

�

′
1 :: B; y : � ⊢ t : �, suh that x 6∈ V

′
1  V1 and h

′
1 6 h1. By (∪L), we then get a �

′ :: B; y : � ∪ � ⊢ t : �,
suh that x 6∈ V

′ = V

′
0 ∪ V ′

1  V0 ∪ V1 = V and h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

.

�0 :: B; x : � ⊢ t : � �1 :: B; x : �; z : � ⊢ u : �
(ut)

� :: B; x : � ⊢ u[t=z] : �

If x 6∈ FV (u[t=z]), we distinguish two ases.
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Case 1: z 6∈ FV (u) ⇒ u[t=z] = u. The IH on �1 yields a �

′
1 :: B; x : � ⊢ u : �, suh that V

′
1  V1 and

h

′
1 6 h1. Sine h

′
1 6 h1 < h and x 6∈ FV (u[t=z] = u), the IH on �

′
1 gives a �

′ :: B ⊢ u[t=z] : �, suh that

x 6∈ V

′  V

′
1  V1 ⊆ V0 ∪ V1 = V and h

′ 6 h

′
1 < h.

Case 2: z ∈ FV (u) ⇒ x 6∈ FV (t) and x 6∈ FV (u). The IH yields a �

′
0 :: B ⊢ t : � , suh that

x 6∈ V

′
0  V0 and h

′
0 6 h0, and a �

′
1 :: B; z : � ⊢ u : �, suh that x 6∈ V

′
1  V1 and h

′
1 6 h1. Applying

(ut) to �

′
0 and �

′
1, we obtain a �

′ :: B ⊢ u[t=z] : �, suh that x 6∈ V

′ = V

′
0 ∪ V ′

1  V0 ∪ V1 = V and

h

′ = max (h′0; h
′
1) + 1 6 max (h0; h1) + 1 = h.

(iv) We distinguish two ases.

Case 1: y 6∈ FV (t) ⇒ t[x=y] = t. Applying (iii) to �, we get a �

′ :: B; x : � ⊢ t[x=y] : � , suh that

y 6∈ V

′  V and h

′ 6 h.

Case 2: y ∈ FV (t). In this ase, we derive ontration through the ut rule.

(ax)

B; x : � ⊢ x : � � :: B; x : �; y : � ⊢ t : �
(ut)

�

′ :: B; x : � ⊢ t[x=y] : �

It is V

′ = V

ax

∪ V = V and h

′ = h+ 1 > h. ⊣

Remark 7.12 (i) Contrary to IUL

m

, where ontration is derivable only through an additive ut, on-

tration is still derivable in ase 2 of 7.11(iv), if we onsider a multipliative ut (reall Remark 2.4).

(ii) The derivability of ontration in sequent alulus di�ers qualitatively from the derivability of

ontration in natural dedution. This is beause, in sequent alulus, we annot prove it by indution on

�, as we do in natural dedution. If we attempt an indution on � in sequent alulus, there are ertain

subases of the indution step that annot proeed, e.g. the following (∪L) subase.

�0 :: B; x : �1 ∪ �2; y : �1 ⊢ t : � �1 :: B; x : �1 ∪ �2; y : �2 ⊢ t : �
(∪L)

� :: B; x : �1 ∪ �2; y : �1 ∪ �2 ⊢ t : �

This subase annot proeed, as we annot apply the indution hypothesis to the premises, where x and y

are not assigned the same type.

(iii) The derivability of ontration in sequent alulus also di�ers quantitatively from the derivability

of ontration in natural dedution. This is beause, in sequent alulus, we annot prove that V

′ = V \{y}
and T

′ = T , as we do in natural dedution. Case 2 of 7.11(iv), where V

′ 6= V \ {y} and T

′ 6= T , justi�es

this laim.

(iv) As far as renaming, weakening, and strengthening are onerned, the derivability in sequent

alulus displays no qualitative or quantitative di�erene from the derivability in natural dedution.

It is easy to hek that, if B ⊢ t : � is provable in the sequent alulus IUT

⊕
, then FV (t) ⊆ dom(B).

We an thus show that Proposition 4.16 still holds in the sequent alulus ontext.

Proposition 7.13 If B ⊢ t : �, then dom(B) ∩BV (t) = ∅, Consequently, sine FV (t) ⊆ dom(B), it is
FV (t) ∩BV (t) = ∅.



7.2 The type system IUT

⊕
in sequent alulus 151

Proof. By indution on B ⊢ t : �. We show the most remarkable ases of the indution step.

.

B ⊢ t : � B; x : � ⊢ u : �
(→L)

B; y : �→ � ⊢ u[yt=x] : �

The IH implies that dom(B) ∩ BV (t) = ∅ and that dom(B) ∩ BV (u) = ∅. Therefore, we get that

dom(B)∩ (BV (u)∪BV (t)) = ∅. Sine y 6∈ BV (u)∪BV (t) by de�nition of the (→L), we further get that

(dom(B) ∪ {y}) ∩ (BV (u) ∪BV (t)) = ∅. This is the required result, as BV (u) ∪BV (t) = BV (u[yt=x]).

.

B ⊢ t : � B; x : � ⊢ u : �
(ut)

B ⊢ u[t=x] : �

The IH implies that dom(B) ∩ BV (t) = ∅ and that dom(B) ∩ BV (u) = ∅. Therefore, we get that

dom(B) ∩ (BV (u) ∪BV (t)) = ∅. This is the required result, as BV (u) ∪BV (t) = BV (u[t=x]). ⊣

The sequent alulus ounterpart of Proposition 4.17 is stated and proved as follows.

Proposition 7.14 Let � be a derivation in IUT

⊕
, R be a rule in �, and B1; : : : ; Bn be the bases in the

branh onneting the onlusion of R to the root of �.

(i) If R is (→L) or (ut) and x is the variable substituted in the ourse of R, then x 6∈
⋃
n

i=1 dom(B
i

).
(ii) If R is (→R) and x is the variable bounded in the ourse of R, then x 6∈

⋃
n

i=1 dom(B
i

).

Proof. We use indution on n for both (i) and (ii). We show the (→L) ase, noting that the other two

ases are dealt with in a similar manner.

Base: If n = 1, the piture is as shown below.

B ⊢ t : � B; x : � ⊢ u : �
R=(→L)

� :: B1 = B ∪ { y : � → � } ⊢ u[yt=x] : �

By the de�nition of \basis", we have that x 6∈ dom(B); moreover, by the de�nition of (→L), we have

that x 6= y. Therefore, we get that x 6∈ dom(B) ∪ {y} = dom(B1).

Indution step: We suppose that x 6∈
⋃
n

i=1 dom(B
i

) and seek to show that x 6∈
⋃
n+1
i=1 dom(B

i

).
If a one-premise rule among (→R),(∩L), or (∪R) intervenes between B

n

and B

n+1 with Bn being the

basis of the premise, it is

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). If a two-premise rule among (∩R),(∪L), or

(ut) intervenes between B

n

and B

n+1 with Bn being the basis of either the left or the right premise, it

is one again

⋃
n+1
i=1 dom(B

i

) =
⋃
n

i=1 dom(B
i

). In all these ases, the result follows from the IH.

We elaborate on the ase of an (→L) between B
n

and B

n+1. If an (→L) intervenes between B
n

and

B

n+1 with Bn being the basis of the left premise, we have the following piture.

B ⊢ t : � B; x : � ⊢ u : �
R=(→L)

B1 = B ∪ { y : � → � } ⊢ u[yt=x] : �

.

.

.

�0 :: B
n

⊢ t′ : � �1 :: B
n

; z : � ⊢ u′ :  
(→L)

� :: B
n+1 = B

n

∪ {w : �→ � } ⊢ u′[wt′=z] :  
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By the de�nition of (→L), variable w is fresh with respet to �0 and therefore w 6= x. Hene, we have

that x 6∈ (
⋃
n

i=1 dom(B
i

)) ∪ {w} =
⋃
n+1
i=1 dom(B

i

). [We note that the IH entails that x 6∈ dom(B
n

), so
that we may have z = x.℄ If an (→L) intervenes between B

n

and B

n+1 with B

n

being the basis of the

right premise, the piture is reformed as follows.

�0 :: B′ ⊢ t′ : �

B ⊢ t : � B; x : � ⊢ u : �
R=(→L)

B1 = B ∪ { y : � → � } ⊢ u[yt=x] : �

.

.

.

�1 : B
n

= B

′ ∪ { z : � } ⊢ u′ :  
(→L)

� :: B
n+1 = B

′ ∪ {w : � → � } ⊢ u′[wt′=z] :  

By the de�nition of (→L), variable w is fresh with respet to �1 and therefore w 6= x. Hene, we have

that x 6∈ (
⋃
n

i=1 dom(B
i

)) ∪ {w} =
⋃
n+1
i=1 dom(B

i

). [The IH entails that x 6∈ dom(B
n

) = dom(B′) ∪ {z},
so that z 6= x.℄ ⊣

Remark 7.15 Propositions 7.13 and 7.14 do not hold in the multipliative sequent alulus IUT of

Chapter 2. The following derivation is a ounterexample for both.

x : � ⊢ x : �

x : � ⊢ x : �
(→R)

∅ ⊢ �x: x : � → �

x : � ⊢ x : � x : � ⊢ x : �
(→L)1

B1 = { x : �; y : � → � } ⊢ yx : �
(ut)

B2 = { x : � } ⊢ (�x: x)x : �
(→L)2

� :: B = B3 = {x : �; z : � → � } ⊢
IUT

t = (�x: x)(zx) : �

Proposition 7.13 is ontradited, as it is dom(B) ∩ BV (t) = FV (t) ∩ BV (t) = {x; z} ∩ {x} 6= ∅.
Proposition 7.14 is ontradited in two instanes: i) the variable substituted in the ourse of (→L)1,

namely x, belongs to

⋂3
i=1 dom(B

i

) ⊆
⋃3
i=1 dom(B

i

), and ii) the variable substituted in the ourse of

(→L)2, whih is x again, belongs to dom(B).

The additive sequent alulus IUT

⊕
is equivalent to the multipliative sequent alulus IUT, as the

next theorem shows.

Theorem 7.16 (i) If � :: B ⊢ t : � in IUT

⊕
, there exists a �

′ :: B ⊢ t : � in IUT, suh that V

′ = V

and T

′ = T .

(ii) If � :: B ⊢ t : � in IUT and x1; : : : ; xn 6∈ V , there exists a �

′ :: B ⊢ t

′ =
�

t : � in IUT

⊕
, suh

that x1; : : : ; xn 6∈ V

′ ⊇ V and T

′ = T .

Proof. (i) By indution on the IUT

⊕
-derivation �.

Base: Sine an IUT

⊕
-axiom is also an IUT-axiom, if � is an axiom, then �

′ = �.

Indution step: We show two representative ases.
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�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(→L)

� :: B; y : � → � ⊢ u[yt=x] : �

The IH gives a �

′
0 :: B ⊢ t : � in IUT, suh that V

′
0 = V0 and T

′
0 = T0, and also a �

′
1 :: B; x : � ⊢ u : �

in IUT, suh that V

′
1 = V1 and T

′
1 = T1. Sine y 6∈ V0 ∪ V1 = V

′
0 ∪ V ′

1 , we an apply a y-introduing,

multipliative (→L) to �′
0 and �

′
1 to get a �

′ :: B; y : � → � ⊢ u[yt=x] : � in IUT, s.t. V ′ = V

′
0 ∪V

′
1 ∪{y} =

V0 ∪ V1 ∪ {y} = V and T

′ = T .

.

�0 :: B ⊢ t : � �1 :: B; x : � ⊢ u : �
(ut)

� :: B ⊢ u[t=x] : �

The IH yields a �

′
0 :: B ⊢ t : � in IUT, suh that V

′
0 = V0 and T

′
0 = T0, and also a �

′
1 :: B; x : � ⊢ u : �

in IUT, suh that V

′
1 = V1 and T

′
1 = T1. Applying a multipliative (ut) to �

′
0 and �

′
1, we obtain a

�

′ :: B ⊢ u[t=x] : � in IUT, suh that V

′ = V

′
0 ∪ V ′

1 = V0 ∪ V1 = V and T

′ = T .

(ii) By indution on the IUT-derivation �.

Base: Sine an IUT-axiom is also an IUT

⊕
-axiom, if � is an axiom, then �

′ = �.

Indution step: We elaborate on two harateristi ases, assuming that dom(B) ∩ dom(B′) = ∅.

.

�0 :: B ⊢ t : � �1 :: B′
; z : � ⊢ u : �

(→L)

� :: B; B′
; y : � → � ⊢ u[yt=z] : �

We suppose that x1; : : : ; xn 6∈ V = V0 ∪ V1 ∪ {y}, so that x1; : : : ; xn 6∈ V0 ∪ V1 and y 6= x1; : : : ; xn.

Sine y 6∈ V0 ∪ V1 [by de�nition of the (→L)℄, we have that x1; : : : ; xn; y =∈ V0 and x1; : : : ; xn; y 6∈ V1.

The IH gives a �

′
0 :: B ⊢ t

′ =
�

t : � in IUT

⊕
, suh that x1; : : : ; xn; y 6∈ V

′
0 ⊇ V0 and T

′
0 = T0, and a

�

′
1 :: B′

; z : � ⊢ u′ =
�

u : � in IUT

⊕
, suh that x1; : : : ; xn; y 6∈ V

′
1 ⊇ V1 and T

′
1 = T1. If

V

′
0 ∩ dom(B′) = S

′
0

we rename the set

2

S

′
0 in �

′
0 to a fresh-with-respet-to-(V

′
0 ∪ dom(B′) ∪ {x1; : : : ; xn; y}) set to attain

a �

2
0 :: B ⊢ t

′′ =
�

t

′ : �, suh that the sets V

2
0 ; dom(B′), and {x1; : : : ; xn; y} are pairwise disjoint and

T

2
0 = T0. Suessive appliations of weakening to �

2
0 by elements in B

′
provide a �

3
0 :: B; B′ ⊢ t′′ =

�

t : �,
suh that x1; : : : ; xn; y 6∈ V

3
0 = V

2
0 ∪ dom(B′) ! V

′
0 ∪ dom(B′) and T 3

0 = T0. If

V

′
1 ∩ dom(B) = S

′
1 ∋ z

we rename the set

3

S

′
1 in �

′
1 to a fresh-with-respet-to-(V

′
1 ∪ dom(B) ∪ {x1; : : : ; xn; y}) set to attain a

�

2
1 :: B′

; w : � ⊢ u

′′ =
�

u

′[w=z] : �, suh that the sets V

2
1 ; dom(B), and {x1; : : : ; xn; y} are pairwise

disjoint and T

2
1 = T1. Weakening �

2
1 by elements in B, we get a �

3
1 :: B; B′

; w : � ⊢ u

′′ =
�

u[w=z] : �,
suh that x1; : : : ; xn; y 6∈ V

3
1 = V

2
1 ∪ dom(B) ! V

′
1 ∪ dom(B) and T 3

1 = T1. Sine y 6∈ V

3
0 ∪ V 3

1 , we an

apply a y-introduing, additive (→L) to �3
0 and �

3
1 to obtain a

�

′ :: B; B′
; y : � → � ⊢ u′′[yt′′=w] =

�

(u[w=z])[yt=w] = u[yt=z] : �

2

Sine dom(B) ∩ dom(B′) = ∅, a variable of dom(B′) whih is in V

′
0 may appear bound in t

′
or elsewhere in the body

of �

′
0, where the \body" of a derivation onsists of all sequents in the derivation besides the onlusion.

3

Sine dom(B) ∩ dom(B′) = ∅, a variable of dom(B) whih is in V

′
1 may appear either (in the plae of z) or (bound in

u

′
or elsewhere in the body of �

′
1).
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, where the term-equality (u[w=z])[yt=w] = u[yt=z] is justi�ed by the fat that w 6∈ V (u′), whih

implies that w 6∈ FV (u). It is x1; : : : ; xn 6∈ V

′ = V

3
0 ∪V 3

1 ∪{y} ! (V ′
0 ∪dom(B′))∪ (V ′

1 ∪dom(B))∪{y} =
V

′
0 ∪ V ′

1 ∪ {y} ⊇ V0 ∪ V1 ∪ {y} = V and T

′ = T .

.

�0 :: B; x : � ⊢ t : � �1 :: B′
; x : � ⊢ t : �

(∪L)
� :: B; B′

; x : � ∪ � ⊢ t : �

We suppose that x1; : : : ; xn 6∈ V = V0 ∪ V1. The IH yields a �

′
0 :: B; x : � ⊢ t

′
0 =

�

t : � in IUT

⊕
,

suh that x1; : : : ; xn 6∈ V

′
0 ⊇ V0 and T

′
0 = T0, and a �

′
1 :: B′

; x : � ⊢ t

′
1 =

�

t : � in IUT

⊕
, suh that

x1; : : : ; xn 6∈ V

′
1 ⊇ V1 and T

′
1 = T1. We an atually have t

′
0 = t

′
1 = t

′
(see Example 7.17 below), so

we assume that �

′
0 :: B; x : � ⊢ t

′ =
�

t : � and �

′
1 :: B′

; x : � ⊢ t

′ =
�

t : �. If V

′
0 ∩ dom(B′) = S

′
0,

we rename the set

4

S

′
0 in �

′
0 to a fresh-with-respet-to-(V

′
0 ∪ dom(B′) ∪ {x1; : : : ; xn}) set to attain a

�

2
0 :: B; x : � ⊢ t

′ =
�

t : �, suh that the sets V

2
0 ; dom(B′), and {x1; : : : ; xn} are pairwise disjoint and

T

2
0 = T0. Weakening �

2
0 by B

′
, we get a �

3
0 :: B; B′

; x : � ⊢ t

′ =
�

t : �, suh that x1; : : : ; xn 6∈ V

3
0 =

V

2
0 ∪ dom(B′) ! V

′
0 ∪ dom(B′) and T 3

0 = T0. If V

′
1 ∩ dom(B) = S

′
1, we rename the set S

′
1 in �

′
1 to a

fresh-with-respet-to-(V

′
1 ∪ dom(B) ∪ {x1; : : : ; xn}) set to attain a �

2
1 :: B′

; x : � ⊢ t′ =
�

t : �, suh that

V

2
1 ; dom(B), and {x1; : : : ; xn} are pairwise disjoint and T

2
1 = T1. Weakening �

2
1 by elements in B, we

obtain a �

3
1 :: B; B′

; x : � ⊢ t′ =
�

t : �, suh that x1; : : : ; xn 6∈ V

3
1 = V

2
1 ∪ dom(B) ! V

′
1 ∪ dom(B) and

T

3
1 = T1. Applying an additive (∪L) to �3

0 and �

3
1 , we then obtain a �

′ :: B; B′
; x : � ∪ � ⊢ t′ =

�

t : � in
IUT

⊕
, suh that x1; : : : ; xn 6∈ V

′ = V

3
0 ∪ V 3

1 ! (V ′
0 ∪ dom(B′))∪ (V ′

1 ∪ dom(B)) = V

′
0 ∪ V

′
1 ⊇ V0 ∪ V1 = V

and T

′ = T . ⊣

The next example illustrates the transition from the multipliative IUT to the additive IUT

⊕
in

sequent alulus.

Example 7.17 Let � = (� → �) → �;  = (� → �) → � and onsider

� :: x : � ∪  ; y : �→ � ⊢ t = y (x (�y: y)) : �

in IUT, as shown below.

see below

�0 :: x : �; y : �→ � ⊢ y (x (�y: y)) : �

see below

�1 :: x :  ; y : �→ � ⊢ y (x (�y: y)) : �
(∪L)

� :: x : � ∪  ; y : �→ � ⊢
IUT

t = y (x (�y: y)) : �

x : � ⊢ x : �

y : � ⊢ y : �
(→R)

�010 :: ∅ ⊢ �y: y : � → �

x : � ⊢ x : � x : � ⊢ x : �
(→L)

�011 :: x : �; y : �→ � ⊢ yx : � [z 6∈ V011]
(→L)

�01 :: y : �→ �; z : � ⊢ y (z (�y: y)) : �
(ut)

�0 :: x : �; y : �→ � ⊢
IUT

y (x (�y: y)) : �

4

Sine dom(B′) ∩ (dom(B) ∪ {x} ∪ BV (t′)) = ∅, a variable of dom(B′) whih is in V

′
0 may only appear in the body of

�

′
0. A similar note holds for a variable of dom(B) whih is in V

′
1 .
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y : �→ � ⊢ y : �→ �

y : � ⊢ y : �
(→R)

∅ ⊢ �y: y : � → � y : � ⊢ y : �
(→L)

�110 :: x :  ⊢ x (�y: y) : � x : � ⊢ x : �
(→L)

�11 :: x :  ; z : �→ � ⊢ z (x (�y: y)) : �
(ut)

�1 :: x :  ; y : �→ � ⊢
IUT

y (x (�y: y)) : �

To transform � to a �

′ :: x : � ∪  ; y : � → � ⊢ t

′ =
�

t : � in IUT

⊕
, we need to transform �0 to a

�

′
0 :: x : �; y : � → � ⊢ t′0 =

�

t : � in IUT

⊕
and �1 to a �

′
1 :: x :  ; y : � → � ⊢ t′1 =

�

t : � in IUT

⊕
, so

that t

′
0 = t

′
1 = t

′
. The transformation of �0 to �

′
0 proeeds top-down as follows. We �rst transform �011

to a �

′
011 :: x : �; y : � → � ⊢ yx : � in IUT

⊕
, suh that z 6∈ V

′
011. To do this, we need to rename x in

x : � ⊢ x : � to a fresh-wrt-{x; z; y} variable w and weaken by x : �.

x : � ⊢ x : � x : �; w : � ⊢ w : �
(→L)

⊕

�

′
011 :: x : �; y : �→ � ⊢ yx : � [z 6∈ V ′

011]

We then transform �01 to a �

′
01 :: y : � → �; z : � ⊢ t

′
01 =

�

y (z (�y: y)) : � in IUT

⊕
. To do this, we

need to rename y in �010 to a fresh-wrt-{y; z} variable x and weaken by y : �→ �.

y : �→ �; x : � ⊢ x : �
(→R)

y : �→ � ⊢ �x: x : � → � �

′
011 :: x : �; y : �→ � ⊢ yx : �

(→L)

⊕

�

′
01 :: y : �→ �; z : � ⊢ y (z (�x: x)) : �

To attain �

′
0, we further need to rename x in �

′
01 to a fresh-wrt-{x; y; z; w} variable v and weaken by x : �

and also to weaken x : � ⊢ x : � by y : �→ �.

x : �; y : � → � ⊢ x : �

x : �; y : � → �; v : � ⊢ v : �
(→R)

x : �; y : � → � ⊢ �v: v : � → �

x : �; v : � ⊢ v : � x : �; v : �; w : � ⊢ w : �
(→L)

x : �; y : �→ �; v : � ⊢ yv : �
(→L)

x : �; y : � → �; z : � ⊢ y (z (�v: v)) : �
(ut)

⊕

�

′
0 :: x : �; y : � → � ⊢

IUT

⊕ t

′ = y (x (�v: v)) =
�

t : �

To top-down transform �1 to �

′
1, we observe that �110 is already in IUT

⊕
and we proeed to transform

�11 to a �

′
11 :: x :  ; z : � → � ⊢ t

′
11 =

�

z (x (�y: y)) : � in IUT

⊕
. To do this, we need to rename x in

x : � ⊢ x : � to a fresh-wrt-{x; z} variable y and weaken by x :  .

�110 :: x :  ⊢ x (�y: y) : � x :  ; y : � ⊢ y : �
(→L)

⊕

�

′
11 :: x :  ; z : �→ � ⊢ z (x (�y: y)) : �

To attain �

′
1, we then need to rename y in �

′
11 to a fresh-wrt-{x; y; z} variable v and weaken by y : � → �

and also to weaken y : �→ � ⊢ y : � → � by x :  .
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x :  ; y : � → � ⊢ y : � → �

y : � → �; v : � ⊢ v : �
(→R)

y : � → � ⊢ �v: v : � → � y : � → �; v : � ⊢ v : �
(→L)

y : � → �; x :  ⊢ x (�v: v) : � y : � → �; x :  ; v : � ⊢ v : �
(→L)

x :  ; y : � → �; z : �→ � ⊢ z (x (�v: v)) : �
(ut)

⊕

�

′
1 :: x :  ; y : � → � ⊢

IUT

⊕ t

′ = y (x (�v: v)) =
�

t : �

We �nally obtain �

′
by applying an additive (∪L) to �′

0 and �

′
1.

�

′
0 :: x : �; y : �→ � ⊢ t′ : � �

′
1 :: x :  ; y : �→ � ⊢ t′ : �

(∪L)⊕

�

′ :: x : � ∪  ; y : �→ � ⊢
IUT

⊕ t

′ =
�

t : �

It is V

′ = {x; y; z; w; v} ! {x; y; z} = V and T

′ = T . In transforming �0 and �1 to �
′
0 and �

′
1, respetively,

we hoose the new names (new variables), so that we have i) the least possible number of new variables

in V

′
and ii) t

′
0 = t

′
1 = t

′
.

Combining Theorems 7.16 and 7.9, we see that the three di�erent presentations of the type system

with intersetion and union types are equivalent. We abbreviate \nd" and \s" the natural dedution

style and the sequent alulus style, respetively.

nd IUT

⊕
7:9
⇐⇒ s IUT

⊕
7:16
⇐⇒ s IUT

The sequent alulus IUT

⊕
does not enjoy ut elimination, at least not a total ut elimination, as it

does not ontain an expliit ontration rule. Remark 2.22 for the sequent alulus IUT holds for the

sequent alulus IUT

⊕
, as well, if modi�ed appropriately.

7.3 Relating IUL

m

to IUT

⊕
in sequent alulus

As in the natural dedution ase, the sequent alulus logi IUL

m

is intended to apture the sequent

alulus type system IUT

⊕
on a logial level. In order to elaborate on how the logi attempts to aomplish

this goal, we need the notions of non-standard deoration of the logi and of term-sequent of a sequent.

A deoration of the logi ditated by the very rules of the type system enodes the impliation, but

does not embody the intersetion or the union; it is therefore a \non-standard" deoration. Its formal

de�nition is one more along the line given in 3.15 and its rules are displayed in Figure 7.3. When

deorating ontexts bottom-up, the new variable in an (→L) right premise or an (→R) premise or a

(ut) right premise is fresh with respet to the variables in the branh onneting the onlusion to the

root. The term-sequent of a given sequent derives from the given sequent exatly as the term-statement

of a given statement derives from the given statement in natural dedution (reall De�nition 4.18).

For a deoration ditated by the type system to be possible, whih is essential in examining a orre-

spondene between the logi and the type system, the logi needs to have a single-premise (∩R) and a

single-premise (∪L). This is ahieved by the moleule struture, whih joins together in the same (deo-

rated) moleule sequents that share the same term-sequent

5

. The right intersetion ase oinides with

5

As in the natural dedution ase, this should only be kept in mind as a wishful intention. It an be shown in the sequent

alulus ontext, as well, that not every set of (derivations proving) sequents sharing the same term-sequent an be joined

into a single (derivation proving a) deorated moleule.
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Figure 7.3: Non-standard deoration of sequent alulus IUL

m

.

the intersetion introdution ase in natural dedution. In the ase of left union, the (deorated) logi

merges into the same (deorated) moleule the left and right IUT

⊕
-premises, in parallel for multiple rule

instanes that share the same term-sequent

6

.
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1 ; : : : ; xm : �1
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1 ; : : : ; xm : �1

m

; x : �1 ⊢ t : �1
(∪L)1

x1 : �1
1 ; : : : ; xm : �1

m

; x : �1 ∪ �1 ⊢ t : �1

.

.

.

x1 : �n1 ; : : : ; xm : �n
m

; x : �
n

⊢ t : �
n

x1 : �n1 ; : : : ; xm : �n
m

; x : �
n

⊢ t : �
n

(∪L)
n

x1 : �n1 ; : : : ; xm : �n
m

; x : �
n

∪ �
n

⊢ t : �
n

❀

t : [U ; (�1
1 ; : : : ; �

1
m

; �1 ; �1); (�
1
1 ; : : : ; �

1
m

; �1 ; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �

n

; �
n

); (�n1 ; : : : ; �
n

m

; �

n

; �
n

);V ]
x1;:::; xm; x

(∪L)

t : [U ; (�1
1 ; : : : ; �

1
m

; �1 ∪ �1 ; �1); : : : ; (�
n

1 ; : : : ; �
n

m

; �

n

∪ �
n

; �
n

);V ]
x1;:::; xm; x

It should be obvious by now that the sequent alulus presentation of the logi and the type system

is suseptible to remarks, onerning the relation of the two systems, whih are ompletely analogous to

6

The term-sequent of a (∪L) instane with premises B; x : � ⊢ t : �; B; x : � ⊢ t : � and onlusion B; x : � ∪ � ⊢ t : �,
where dom(B) = {x1; : : : ; xm} is meant to be x1; : : : ; xm; x ⊢ t.
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m

and IUT

⊕

the ones given for the natural dedution presentation. Taking this argument further, we expet that a

sequent alulus notion analogous to the natural dedution notion of tree T

t

iue

assists the sequent alulus

IUL

m

-IUT

⊕
orrespondene.

In natural dedution, we stated and proved orrespondene theorems between IUL

m

and IUT

⊕
, using

the restritive notion of trees T

t

iue

. Looking at the logi, the impliations and the union elimination are

the global rules whih have a ounterpart in the type system. In sequent alulus, the global rules whih

have a ounterpart in the type system are the impliations and the ut. De�ning trees of impliations

and uts with terms, denoted T

t

i

, for both the deorated logi IUL

?

m

and the type system IUT

⊕
, we an

state and prove restrited orrespondene theorems in sequent alulus, as well. We outline the basi

points below.

De�nition 7.18 (IUL

?

m

: T

t

and T

t

i

) (i) Given a deorated moleule t : M
p

in IUL

?

m

, the deoration-

sequent deriving from it is the sequent {p} ⊢ t, abbreviated p ⊢ t.
(ii) Given the tree T of a derivation �

?

in IUL

?

m

, the tree with terms T

t

of �

?

is T with eah node

deorated by the deoration-sequent deriving from the deorated moleule that orresponds to it.

(iii) Given the tree T

t

of a derivation �

?

in IUL

?

m

, we derive the tree of impliations and uts with

terms T

t

i

of �

?

from it by erasing all nodes and orresponding deoration-sequents assoiated to the rules

(X),(∩LR), and (∪LR).

De�nition 7.19 (IUT

⊕
: T

t

and T

t

i

) (i) Given the tree T of a derivation � in IUT

⊕
, the tree with

terms T

t

of � is T with eah node deorated by the term-sequent deriving from the sequent that orresponds

to it.

(ii) Given the tree T

t

of a derivation � in IUT

⊕
, we derive the tree of impliations and uts with

terms T

t

i

of � from it by the following algorithm.

. We hoose a topmost (∩R) or (∪L) in the tree with terms of � and erase all nodes and orrespond-

ing term-sequents assoiated to (∩L) or (∪R) in the trees with terms of the premises. If the resulting

premise trees of impliations and uts with terms are idential, we identify them and erase the node and

orresponding term-sequent assoiated to the (∩R) or (∪L).

. We iterate the above proedure for the tree with terms resulting from the previous step.

. When all the (∩R)'s and (∪L)'s have been dealt with, we make a �nal step to erase any remaining

nodes and orresponding term-sequents assoiated to (∩L) or (∪R).

As in the natural dedution ase, the algorithm in 7.19(ii) does not always terminate.

Theorem 7.20 (From IUL

m

to IUT

⊕
) If �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm is a deorated deriva-

tion in IUL

m

, there are derivations �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) in IUT

⊕
, suh that

1. (T t

i

)
i

exists, 2. (T t

i

)
i

= (T t

i

)
j

(1 6 i 6= j 6 n), and 3. (T t

i

)
i

= (T t

i

)
�

?

.

Theorem 7.21 (From IUT

⊕
to IUL

m

) If �

i

:: x1 : �i1; : : : ; xm : �i
m

⊢ t : �
i

(1 6 i 6 n) are deriva-

tions in IUT

⊕
, suh that 1. (T t

i

)
i

exists and 2. (T t

i

)
i

= (T t

i

)
j

(1 6 i 6= j 6 n), then there is a deorated

derivation �

? :: t : [(�i1; : : : ; �
i

m

; �
i

)n
i=1]x1;:::; xm in IUL

m

, suh that (T t

i

)
�

? = (T t

i

)
i

.

The proofs of 7.20 and 7.21 are the sequent alulus ounterparts of the proofs of 5.10 and 5.13, re-

spetively. They have been heked, but are not exposed here. The (→L) ase in 7.20 is quite demanding,

while 7.21 requires a quite di�erent handling of the exhange inferenes ompared to 5.13 (Remark 7.8 is

relevant).
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At this point, we an explain why an additive presentation of the sequent alulus type system is

hosen. If we attempted the (restrited) orrespondene theorems, stated above, with the multipliative

(sequent alulus) type system instead of the additive (sequent alulus) type system, we would disover

the following. The theorem from the logi to the type system would work �ne, as the additive logi

would projet additively to the type-system level and the multipliative type system behaves exatly as

the additive one, given additive premises. On the other hand, the theorem from the type system to the

logi would not work. Although the hypothesis that the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist would restrit

the (∩R) and (∪L) rule-inferenes in �1; : : : �n to additive versions, the (still) multipliative (→L) and

(ut) rule-inferenes in �1; : : : ; �n would only return to multipliative (→L) and (ut) rule-inferenes in

the logi. For both theorems to work, we either need a logi with multipliative versions of (→L) and

(ut) opposite the multipliative type system or the additive logi introdued in Setion 7.1 opposite the

additive type system.

Following the natural dedution ase, we estimate

7

that a set of derivations �1; : : : ; �n, sharing the

same term-sequent at the root and suh that it is not the ase that the trees (T t

i

)1; : : : ; (T
t

i

)
n

all exist and

are idential, is not always transformable to a set of derivations �

′
1; : : : ; �

′
n

, proving the same sequents as

�1; : : : ; �n, respetively, and suh that the trees (T t

i

)′1; : : : ; (T
t

i

)′
n

all exist and are idential. Given this

estimate, the laims in Setions 5.4 and 6.3 about non-restrited orrespondene theorems and the atual

suess of IUL

m

as a logi for IUT

⊕
, respetively, an also be sustained in sequent alulus, modulo the

onversion of natural dedution notions or rules to the orresponding sequent alulus notions or rules.

7

We use the verb \estimate", as we have not attempted to establish a transformation ounterexample in sequent alulus.

It would be interesting to translate the natural dedution derivations �1 and �2 of Setion 5.3 in sequent alulus style,

examine their ompatibility with respet to trees T

t

i

, and deide whether they onstitute a transformation ounterexample

in sequent alulus, as well.





Conlusions and Future Work

The main aim of this thesis was to o�er a logi orresponding to the type system with intersetion and

union types IUT through deoration, in the manner that the logis o�ered in [18, 15℄ orrespond to the

type system with intersetion types IT through deoration. We modi�ed and extended with union the

logi ISL in [15℄ to de�ne the logi IUL

m

as a logi intended to orrespond to IUT through deoration.

Deorating IUL

m

with untyped terms that simulate the terms in IUT, we proved restrited orrespondene

theorems between the deorated IUL

m

and IUT. The restritions involve the trees of impliations and

union eliminations with terms T

t

iue

, whih are de�ned for both the deorated IUL

m

and IUT. A deorated

derivation �

?

in IUL

m

with deoration-statement x1; : : : ; xm ⊢ t at the root orresponds to a �nite number
of derivations �1; : : : ; �n in IUT that share the term-statement x1; : : : ; xm ⊢ t at the root, and the trees

T

t

iue

of all these derivations �

?

; �1; : : : ; �n are idential (reall Theorems 5.10 and 5.13). More preisely,

in the diretion from IUT to the deorated IUL

m

, it is only under the ondition that the trees T

t

iue

of

�1; : : : ; �n all exist and are idential that we an merge �1; : : : ; �n into a single �

?

with this very tree T

t

iue

(reall the intuitive justi�ation of this fat in Setion 5.4). Sine it is not always the ase that derivations

�1; : : : ; �n that share the same term-statement at the root have existing and idential trees T
t

iue

or, at least,

an be transformed into derivations �

′
1; : : : ; �

′
n

that prove the same statements as �1; : : : ; �n, respetively,

and have existing and idential trees T

t

iue

(reall the transformation ounterexample in Setion 5.3),

the ondition that seures that �1; : : : ; �n an be merged into a single �

?

is indeed a restrition. This

restrition does not agree with the original de�nition of IUL

m

as a logi meant to orrespond to IUT

through deoration; this is beause the de�nition assumed that any statements in IUT that share the

same term-statement an be merged into a single deorated moleule in IUL

m

, so that the two-premise

(∩I) and the two-minor-premise (∪E) in IUT translate into a single-premise (∩I) and a single-minor-

premise (∪E) in the deorated IUL

m

, respetively, allowing the deoration to simulate the terms in IUT

without the inlusion of metatheoretial onditions (reall Setion 4.3). Therefore, the logi IUL

m

does

not atually meet the expetations of its de�nition as a logi for IUT in the manner that the logi ISL (or

its modi�ed version IL

m

) meets the expetations of its de�nition as a logi for IT (reall the disussion

in Setion 6.3). This is a negative result that raises questions about the adequay of strutures like kits

or moleules to desribe logis that orrespond to intersetion (and union) types, in the sense that an

adequate logi would need to retain its good properties under extension. It may be the ase that the

logial foundation of intersetion (and union) types requires a drastially di�erent treatment than what

is studied in this thesis.

However, besides the interrelation between IUL

m

and IUT, we studied IUT in itself, both in natural

dedution and sequent alulus styles, and provided many interesting results about it. We proved ut

elimination in the sequent alulus IUT

C

and emphasized the neessity of an expliit ontration rule for

the elimination of all uts (reall Theorem 2.21 and Remark 2.22). We extended the theorems in [13℄

that haraterize �-terms aording to their typings in IT

ù

and IT to theorems that haraterize �-terms

161
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aording to their typings in IUT

ùC

and IUT

C

, respetively, to onlude that the orrespondenes between

typings and haraterizations remain unhanged under the extension of the type systems with ontration

and union (reall Theorems 2.36, 2.42, 2.47, and 2.49). We also elaborated on properties of IUT, enrihing

already established ones with new information and also proving additional ones; this was done for both the

natural dedution and sequent alulus formulations of the system (reall Propositions 4.14, 4.16, and 4.17

in natural dedution and their ounterparts 7.11, 7.13, and 7.14, respetively, in sequent alulus).

Thoughts for future work inlude the examination of ut elimination in the sequent alulus IUL

m

.

Some work has already been done in this diretion, although it is not inorporated in this thesis. In

partiular, we have shown ut elimination in the sequent alulus IL

m

by means of Gentzen's method [12℄

and, together with S. Ronhi Della Roa, Y. Stavrinos, and A. Saurin, have reorded some serious

evidene that the property breaks down in IUL

m

. If we turn this evidene into proof, we will have

another argument against the adequay of the moleule struture to desribe logis for intersetion (and

union) types.

Another interesting related study, whih is atually a work in progress with Stavrinos, is the study

of a new version IUL

∧
m

of IUL

m

with rules for onjuntion and with (∪E)′ in plae of (∪E) (reall

Proposition 4.13) in juxtaposition with intuitionisti linear logi ILL [14℄, so that the relation between

intersetion (or synhronous onjuntion) and onjuntion (or asynhronous onjuntion) in the former

logi is investigated under the light of the relation between additive and multipliative onjuntion in the

latter. The extended logi IUL

∧
m

ontains an introdution rule and a general elimination rule [16℄ for on-

juntion, whih are asynhronous and multipliative, whereas the rules for intersetion and union remain

synhronous and therefore additive. We have de�ned a translation of formulas of IUL

∧
m

into formulas

of ILL by interpreting onjuntion ∧, intersetion ∩, and union ∪ in the former logi as multipliative

onjuntion ⊗, additive onjuntion &, and additive disjuntion ⊕ in the latter, respetively. We have

further noted that intersetion implies onjuntion in IUL

∧
m

and not onversely, while the translation

of onjuntion implies the translation of intersetion in ILL and not onversely; this non-monotoniity

of the translation reveals a duality of the ∩-∧ relation to the &-⊗ relation. Deorating IUL

∧
m

and ILL

with untyped terms, so that impliation and onjuntion are the only onnetives enoded in the former

logi and their orresponding onnetives through the translation are the only onnetives enoded in the

latter, we have then proved a full embedding of IUL

∧
m

into ILL. Future work may inlude i) examining the

faithfulness of the embedding through an inverse translation from ILL into IUL

∧
m

, ii) further examining

interpretations, properties, and relations of the onnetives in IUL

∧
m

through interpretations, properties,

and relations of their orresponding onnetives in ILL, iii) investigating normalization in IUL

∧
m

through

normalization in ILL, iv) a ategorial study of the embedding, viewing the two logis as ategories and

the translation as a ontravariant funtor, and v) a semantial omparative study of the two logis.



APPENDIX A

Proof of Lemma 2.18

A fully detailed proof of Lemma 2.18 follows.

Lemma A.1 (Lemma 2.18) If � :: B ⊢ t : � is a derivation in IUT

′
C

with a mix as �nal rule and no

other mix ontained, then there is a mix-free derivation �

′ :: B ⊢ t′ : � in IUT

′
C

, where t։
�

t

′
.

Proof. Writing \mf" for \mix-free" and \ t=x

j

" for the substitutions in parallel \ t=x1; : : : ; t=xm", we

an display the �nal mix of � as follows.

mf

�0 :: B ⊢ t : �

mf

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d; r)

� :: B; B′ ⊢ u[t=x
j

] : �

We proeed by trans�nite indution on the measure m of the mix, onsidering the lexiographi order

for measures.

Base: If m = (0; 2), then: (i) d = 0 ⇒ � = �, for some type variable � ⇒ the �nal rule of �1 is not

a left rule introduing � and (ii) r = 2 ⇒ rr = 1 ⇒ the �nal rule of �1 is not a right rule or a left rule

introduing some type in B

′
or ontration in B

′
or ontration of �. So, �1 must be an axiom and we

distinguish the following ases.

Case 1: The term typed by �1 belongs to {x1; : : : ; xm}.

mf

�0 :: B ⊢ t : �
(ax)

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ x
j

: �
(mix)

� :: B;B′ ⊢ t : �

,→
�0 +Lemma 2.13(ii)

mf

�

′ :: B;B′ ⊢ t : �

Case 2: The term typed by �1 does not belong to {x1; : : : ; xm}.

�0 :: B ⊢ t : �
(ax)

�1 :: B′
; y : �; x1 : �; : : : ; x

m

: � ⊢ y : �
(mix)

� :: B;B′
; y : � ⊢ y : �

,→
(ax)

�

′ :: B;B′
; y : � ⊢ y : �
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Indution step for limit points: If m = (d; 2) with d > 0, then: (i) lr = 1 ⇒ �0 is an axiom or

its �nal rule is a right rule and (ii) rr = 1 ⇒ �1 is an axiom or its �nal rule is a left rule introduing �

with m = 1. From (i) and (ii) we have the following ases.

Case 1: If �1 is an axiom, we refer to the base ase.

Case 2: If �0 is an axiom, it suÆes to show the ase where the �nal rule of �1 is a left rule introduing

� with m = 1.

(ax)

�0 :: B; y : � ⊢ y : �

mf

�1 :: B′
; x : � ⊢ u : �

(mix)

� :: B;B′
; y : � ⊢ u[y=x] : �

,→
�1 +Lemma 2.13 mf

�

′ :: B;B′
; y : � ⊢ u[y=x] : �

Case 3: Derivations �0; �1 have (→R),(→L) as �nal rules, respetively.

B; y : � ⊢ v : �
(→R)

�0 :: B ⊢ �y: v : � → �

B

′ ⊢ t : � B

′′
; z : � ⊢ u : �

(→L)

�1 :: B′
; B

′′
; x : � → � ⊢ u[xt=z] : �

(mix), m = (d(� → �); 2)
� :: B;B′

; B

′′ ⊢ u[xt=z][�y:v=x] : �

,→

B

′ ⊢ t : � B; y : � ⊢ v : �
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ v[t=y] : �
[IH: m

′
< m℄

B;B

′ ⊢ t0 : � (mf) B

′′
; z : � ⊢ u : �

(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′
; B

′′ ⊢ u[t0=z] : �
[IH: m

′′
< m℄

�

′ :: B;B′
; B

′′ ⊢ t1 : � (mf)

By the IH, we have v[t=y] ։
�

t0 and u[t0=z] ։�

t1. Sine x is not free in u, we get u[xt=z][�y:v=x] =
u[(�y:v)t=z] ։

�

u[v[t=y]=z] ։
�

u[t0=z] ։�

t1.

Case 4: Derivations �0; �1 have (∩R),(∩L) as �nal rules, respetively.

B ⊢ v : � B

′ ⊢ v : �
(∩R)

�0 :: B;B′ ⊢ v : � ∩ �

B

′′
; x : � ⊢ u : �

(∩L)
�1 :: B′′

; x : � ∩ � ⊢ u : �
(mix), m = (d(� ∩ �); 2)

� :: B;B′
; B

′′ ⊢ u[v=x] : �

,→

B ⊢ v : � B

′′
; x : � ⊢ u : �

(mix)

′
, m

′ = (d(�); r′)
B;B

′′ ⊢ u[v=x] : �
[IH: m

′
< m℄

B;B

′′ ⊢ t0 : � (mf)

[Lemma 2.13(ii)℄

�

′ :: B;B′
; B

′′ ⊢ t0 : � (mf)

By the IH, we have u[v=x] ։
�

t0.

Case 5: If �0; �1 have (∪R),(∪L) as �nal rules, respetively, the ase is very similar to ase 4.
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Indution step for suessor points: If m = (d; r) with r > 2, then: A) lr > 1 or B) rr > 1.

Case A: lr > 1 ⇒ the �nal rule of �0 is a ontration or a left rule.

Case (C): In what follows, we onsider z fresh with respet to �1; otherwise, we substitute it by a

fresh (wrt �1) w, using Lemma 2.13(i).

B; y : �; z : � ⊢ t : �
(C)

�0 :: B; y : � ⊢ t[y=z] : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ⊢ u[t[y=z]=x

j

] : �

,→

B; y : �; z : � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : �; z : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : �; z : � ⊢ t0 : � (mf)

(C)

�

′ :: B;B′
; y : � ⊢ t0[y=z] : �

By the IH, we have u[t=x
j

] ։
�

t0. Sine z is not free in u, we get u[t[y=z]=x
j

] = u[t=x
j

][y=z] ։
�

t0[y=z].

Case (→L): In what follows, we onsider z; y fresh with respet to �1 and � 6= �.

B ⊢ t : � B

′
; z : � ⊢ v : �

(→L)

�0 :: B;B′
; y : � → � ⊢ v[yt=z] : � �1 :: B′′

; x1 : �; : : : ; x
m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � → � ⊢ u[v[yt=z]=x

j

] : �

,→

B ⊢ t : �

B

′
; z : � ⊢ v : � �1 :: B′′

; x1 : �; : : : ; x
m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B

′
; B

′′
; z : � ⊢ u[v=x

j

] : �
[IH: m

′
< m℄

B

′
; B

′′
; z : � ⊢ t0 : � (mf)

(→L)

�

′ :: B;B′
; B

′′
; y : � → � ⊢ t0[yt=z] : �

By the IH, we have u[v=x
j

] ։
�

t0. Sine z is not free in u, we get u[v[yt=z]=x
j

] = u[v=x
j

][yt=z] ։
�

t0[yt=z].

Case (∩L): If the �nal rule of �0 is a left intersetion

B; y : � ⊢ t : �
(∩L)

�0 :: B; y : � ∩ � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ∩ � ⊢ u[t=x

j

] : �

we distinguish two subases aording to whether y : � ∩ � belongs to B

′
or not.

Subase a: Suppose that B

′ = B

′′
; y : � ∩�. In what follows, we onsider z fresh with respet to both

�1 and �0.
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B; y : � ⊢ t : �
(∩L)

�0 :: B; y : � ∩ � ⊢ t : � �1 :: B′′
; y : � ∩ �; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′′
; y : � ∩ � ⊢ u[t=x

j

] : �

,→

B; y : � ⊢ t : �

�1 :: B′′
; y : � ∩ �; x1 : �; : : : ; x

m

: � ⊢ u : � (mf)

[Lemma 2.13(i)℄

B

′′
; z : � ∩ �; x1 : �; : : : ; x

m

: � ⊢ u[z=y] : � (mf)

(mix)

′
, m

′ = (d(�); r − 1)
B;B

′′
; y : �; z : � ∩ � ⊢ u[z=y][t=x

j

] : �
[IH: m

′
< m℄

B;B

′′
; y : �; z : � ∩ � ⊢ t0 : � (mf)

(∩L)
B;B

′′
; y : � ∩ �; z : � ∩ � ⊢ t0 : �

(C)

�

′ :: B;B′′
; y : � ∩ � ⊢ t0[y=z] : �

By the IH, we have u[z=y][t=x
j

] ։
�

t0. As z is not free in u or t, we get u[t=xj ] = u[z=y][t=x
j

][y=z] ։
�

t0[y=z].

Subase b: Suppose that y : � ∩ � 6∈ B

′
.

B; y : � ⊢ t : �
(∩L)

�0 :: B; y : � ∩ � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ∩ � ⊢ u[t=x

j

] : �

,→

B; y : � ⊢ t : � �1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : � ⊢ t0 : � (mf)

(∩L)
�

′ :: B;B′
; y : � ∩ � ⊢ t0 : �

By the IH, we have u[t=x
j

] ։
�

t0.

Case (∪L): If the �nal rule of �0 is a left union

B; y : � ⊢ t : � B

′
; y : � ⊢ t : �

(∪L)
�0 :: B;B′

; y : � ∪ � ⊢ t : �
�1 :: B′′

; x1 : �; : : : ; x
m

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ∪ � ⊢ u[t=x

j

] : �

we again distinguish two subases aording to whether y : � ∪ � belongs to B

′′
or not.

Subase a: Suppose that B

′′ = B

′′′
; y : � ∪�. In what follows, we write \x

j

: �" for x1 : �; : : : ; x
m

: �
and onsider z fresh with respet to �1 and �0.

B; y : � ⊢ t : � B

′
; y : � ⊢ t : �

(∪L)
�0 :: B;B′

; y : � ∪ � ⊢ t : � �1 :: B′′′
; y : � ∪ �; x

j

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′′
; y : � ∪ � ⊢ u[t=x

j

] : �

,→
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�

′
0 :: B;B′′′

; y : �; z : � ∪ � ⊢ t0 : � (mf) �

′
1 :: B′

; B

′′′
; y : �; z : � ∪ � ⊢ t1 : � (mf)

(∪L)
B;B

′
; B

′′′
; y : � ∪ �; z : � ∪ � ⊢ t′(= t0 = t1) : �

(C)

�

′ :: B;B′
; B

′′′
; y : � ∪ � ⊢ t′[y=z] : �

We derive �

′
0; �

′
1 as shown below.

B; y : � ⊢ t : �

�1 :: B′′′
; y : � ∪ �; x

j

: � ⊢ u : � (mf)

[Lemma 2.13(i)℄

B

′′′
; z : � ∪ �; x

j

: � ⊢ u[z=y] : � (mf)

(mix)

′
, m

′ = (d(�); r′)
B;B

′′′
; y : �; z : � ∪ � ⊢ u[z=y][t=x

j

] : �
[IH: r

′
< r ⇒ m

′
< m℄

�

′
0 :: B;B′′′

; y : �; z : � ∪ � ⊢ t0 : � (mf)

B

′
; y : � ⊢ t : �

�1 :: B′′′
; y : � ∪ �; x

j

: � ⊢ u : � (mf)

[Lemma 2.13(i)℄

B

′′′
; z : � ∪ �; x

j

: � ⊢ u[z=y] : � (mf)

(mix)

′′
, m

′′ = (d(�); r′′)
B

′
; B

′′′
; y : �; z : � ∪ � ⊢ u[z=y][t=x

j

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

�

′
1 :: B′

; B

′′′
; y : �; z : � ∪ � ⊢ t1 : � (mf)

By the IH, we have t0 �և u[z=y][t=x
j

] ։
�

t1. But t0 and t1 are normal terms (Remark 2.12(i)), so,

by uniqueness of the normal form, we get t0 = t1 = t

′
. Finally, sine z is not free in u or t, we have

u[t=x
j

] = u[z=y][t=x
j

][y=z] ։
�

t

′[y=z].

Subase b: Suppose that y : � ∪ � 6∈ B

′′
.

�00 :: B; y : � ⊢ t : � �01 :: B′
; y : � ⊢ t : �

(∪L)
�0 :: B;B′

; y : � ∪ � ⊢ t : � �1 :: B′′
; x

j

: � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ∪ � ⊢ u[t=x

j

] : �

,→

�00 �1
(mix)

′
, m

′ = (d(�); r′)
B;B

′′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′′
; y : � ⊢ t0 : � (mf)

�01 �1
(mix)

′′
, m

′′ = (d(�); r′′)
B

′
; B

′′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′′
< m℄

B

′
; B

′′
; y : � ⊢ t1 : � (mf)

(∪L)
�

′ :: B;B′
; B

′′
; y : � ∪ � ⊢ t′(= t0 = t1) : �

By the IH and using the uniqueness of normal form, we get u[t=x
j

] ։
�

t

′
.

Case B: rr > 1 ⇒ the �nal rule of �1 is a ontration or a left rule or a right rule.

Case (C): We distinguish two subeses.

Subase a: The mix-type is ontrated.

�0 :: B ⊢ t : �

B

′
; x0 : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(C)

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ u[x1=x0] : �
(mix), m = (d(�); r)

� :: B;B′ ⊢ u[x1=x0][t=xj ] : �

,→
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�0 :: B ⊢ t : � B

′
; x0 : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′ ⊢ u[t=x0; t=xj ] : �
[IH: m

′
< m℄

�

′ :: B;B′ ⊢ t0 : � (mf)

It is u[x1=x0][t=xj ] = u[t=x0; t=xj ]
[IH]
։
�

t0.

Subase b: A type di�erent from the mix-type is ontrated. In what follows, we onsider z fresh

with respet to �0.

�0 :: B ⊢ t : �

B

′
; y : �; z : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(C)

�1 :: B′
; y : �; x1 : �; : : : ; x

m

: � ⊢ u[y=z] : �
(mix), m = (d(�); r)

� :: B;B′
; y : � ⊢ u[y=z][t=x

j

] : �

,→

�0 :: B ⊢ t : � B

′
; y : �; z : �; x1 : �; : : : ; x

m

: � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : �; z : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : �; z : � ⊢ t0 : � (mf)

(C)

�

′ :: B;B′
; y : � ⊢ t0[y=z] : �

Sine z is not free in t, we have u[y=z][t=x
j

] = u[t=x
j

][y=z]
[IH]
։
�

t0[y=z].

Case (→L): We distinguish two subases.

Subase a: The mix-type is introdued by (→L). In what follows, it is 1 6 g 6 k; k+1 6 h 6 m− 1,
and z; x

m

fresh with respet to �0.

�0 :: B ⊢ t : �

�10 :: B′
; x1 : �; : : : ; x

k

: � ⊢ v : �1 �11 :: B′′
; x

k+1 : �; : : : ; x
m−1 : �; z : �2 ⊢ u : �

(→L)

�1 :: B′
; B

′′
; x1 : �; : : : ; x

m−1 : �; x
m

: � ⊢ u[x
m

v=z] : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′ ⊢ u[x
m

v=z][t=x
j

] : �

,→
�0

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ v[t=x
g

] : �1
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′ ⊢ t0 : �1 (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′
; z : �2 ⊢ u[t=x

h

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′
; z : �2 ⊢ t1 : � (mf)

(→L)

B;B

′
; B

′′
; x

m

: � ⊢ t1[xmt0=z] : �
(mix)

′′′
, m

′′′ = (d(�); r′′′)
B;B

′
; B

′′ ⊢ t1[xmt0=z][t=xm] : �
[IH: r

′′′
< r ⇒ m

′′′
< m℄

�

′ :: B;B′
; B

′′ ⊢ t2 : � (mf)

It is r

′′′ = lr

′′′ + rr

′′′ = lr + 1 < lr + rr = r. By the IH, we have v[t=x
g

] ։
�

t0; u[t=xh] ։�

t1, and

t1[xmt0=z][t=xm] ։�

t2. Sine z; xm are not free in t, we get

u[x
m

v=z][t=x
j

] = u[t=x
h

][x
m

(v[t=x
g

])=z][t=x
m

] ։
�

t1[xmt0=z][t=xm] ։�

t2

Subase b: A type di�erent from the mix-type is introdued by (→L). In what follows, it is 1 6 g 6 k,

k + 1 6 h 6 m, and z; y fresh with respet to �0.
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�0 :: B ⊢ t : �

�10 :: B′
; x1 : �; : : : ; x

k

: � ⊢ v : �1 �11 :: B′′
; x

k+1 : �; : : : ; x
m

: �; z : �2 ⊢ u : �
(→L)

�1 :: B′
; B

′′
; x1 : �; : : : ; x

m

: �; y : � ⊢ u[yv=z] : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ⊢ u[yv=z][t=x

j

] : �

,→

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ v[t=x
g

] : �1
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′ ⊢ t0 : �1 (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′
; z : �2 ⊢ u[t=x

h

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′
; z : �2 ⊢ t1 : � (mf)

(→L)

�

′ :: B;B′
; B

′′
; y : � ⊢ t1[yt0=z] : �

By the IH, we have v[t=x
g

] ։
�

t0 and u[t=x
h

] ։
�

t1. As z is not free in t, we get u[yv=z][t=x
j

] =
u[t=x

h

][y(v[t=x
g

])=z] ։
�

t1[yt0=z].

Case (∪L): We distinguish two subases.

Subase a: The mix-type is introdued by (∪L). In what follows, it is 1 6 g 6 m− 1 and we onsider

{x1; : : : ; xm} ⊆ FV (u) and x
m

fresh with respet to �0.

�0 :: B ⊢ t : �

�10

B

′
; x1 : �; : : : ; x

m−1 : �; x
m

: �1 ⊢ u : �

�11

B

′′
; x1 : �; : : : ; x

m−1 : �; x
m

: �2 ⊢ u : �
(∪L)

�1 :: B′
; B

′′
; x1 : �; : : : ; x

m−1 : �; x
m

: � ⊢ u : �
(mix), m = (d(�); r) ,→

� :: B;B′
; B

′′ ⊢ u[t=x
j

] : �

�0

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′
; x

m

: �1 ⊢ u[t=xg ] : �
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′
; x

m

: �1 ⊢ t0 : � (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′
; x

m

: �2 ⊢ u[t=xg ] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′
; x

m

: �2 ⊢ t1 : � (mf)

(∪L)
B;B

′
; B

′′
; x

m

: � ⊢ t′(= t0 = t1) : �
(mix)

′′′
, m

′′′ = (d(�); r′′′)
B;B

′
; B

′′ ⊢ t′[t=x
m

] : �
[IH: r

′′′
< r ⇒ m

′′′
< m℄

�

′ :: B;B′
; B

′′ ⊢ t2 : � (mf)

It is r

′′′ = lr

′′′ + rr

′′′ = lr + 1 < lr + rr = r. By the IH, we have t0 �

և u[t=x
g

] ։
�

t1 and

t

′[t=x
m

] ։
�

t2. The terms t0; t1 are normal (Remark 2.12(i)) and by uniqueness of normal form, we get

t0 = t1 = t

′
. Finally, sine x

m

is not free in t, we get u[t=x
j

] = u[t=x
g

][t=x
m

] ։
�

t

′[t=x
m

] ։
�

t2.

Subase b: A type di�erent from the mix-type is introdued by (∪L). In what follows, we write

\x

j

: �" for x1 : �; : : : ; x
m

: � and onsider {x1; : : : ; xm} ⊆ FV (u) and z fresh with respet to �10; �11,

and �0.

�0 :: B; y : � ⊢ t : �

�10 :: B′
; x

j

: �; y : �1 ⊢ u : � �11 :: B′′
; x

j

: �; y : �2 ⊢ u : �
(∪L)

�1 :: B′
; B

′′
; x

j

: �; y : � ⊢ u : �
(mix), m = (d(�); r)

� :: B;B′
; B

′′
; y : � ⊢ u[t=x

j

] : �

,→
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�0

�10 :: B′
; x

j

: �; y : �1 ⊢ u : � (mf)

[2.13(i)℄

B

′
; x

j

: �; z : �1 ⊢ u[z=y] : � (mf)

(mix)

′
, m

′

B;B

′
; y : �; z : �1 ⊢ u[z=y][t=xj ] : �

[IH: m

′
< m℄

B;B

′
; y : �; z : �1 ⊢ t0 : � (mf)

�0

�11 :: B′′
; x

j

: �; y : �2 ⊢ u : � (mf)

[2.13(i)℄

B

′′
; x

j

: �; z : �2 ⊢ u[z=y] : � (mf)

(mix)

′′
, m

′′

B;B

′′
; y : �; z : �2 ⊢ u[z=y][t=xj ] : �

[IH: m

′′
< m℄

B;B

′′
; y : �; z : �2 ⊢ t1 : � (mf)

(∪L)
B;B

′
; B

′′
; y : �; z : � ⊢ t′(= t0 = t1) : �

(C)

�

′ :: B;B′
; B

′′
; y : � ⊢ t′[y=z] : � (mf)

By the IH, we have t0 �և u[z=y][t=x
j

] ։
�

t1. As z is not free in t and t0; t1 are idential, sine they

are both normal, we get u[t=x
j

] = u[z=y][t=x
j

][y=z] ։
�

t

′[y=z].

Case (∩L): This ase is handled in a manner similar to the two left-rule ases shown above. It is even

easier, sine the rule in question has a single premise.

Case (→R): We onsider y fresh with respet to �0.

�0 :: B ⊢ t : �

B

′
; x1 : �; : : : ; x

m

: �; y : � ⊢ u : �
(→R)

�1 :: B′
; x1 : �; : : : ; x

m

: � ⊢ �y: u : � → �

(mix), m = (d(�); r)
� :: B;B′ ⊢ (�y: u)[t=x

j

] : � → �

,→

�0 :: B ⊢ t : � B

′
; x1 : �; : : : ; x

m

: �; y : � ⊢ u : �
(mix)

′
, m

′ = (d(�); r − 1)
B;B

′
; y : � ⊢ u[t=x

j

] : �
[IH: m

′
< m℄

B;B

′
; y : � ⊢ t0 : � (mf)

(→R)

�

′ :: B;B′ ⊢ �y: t0 : � → �

By the IH, we have u[t=x
j

] ։
�

t0, so (�y: u)[t=x
j

] = �y: u[t=x
j

] ։
�

�y: t0.

Case (∩R): We onsider {x1; : : : ; xm} ⊆ FV (u) and write \x

j

: �" for x1 : �; : : : ; x
m

: �.

�0 :: B ⊢ t : �

�10 :: B′
; x

j

: � ⊢ u : � �11 :: B′′
; x

j

: � ⊢ u : �
(∩R)

�1 :: B′
; B

′′
; x

j

: � ⊢ u : � ∩ �
(mix), m = (d(�); r)

� :: B;B′
; B

′′ ⊢ u[t=x
j

] : � ∩ �

,→

�0 �10
(mix)

′
, m

′ = (d(�); r′)
B;B

′ ⊢ u[t=x
j

] : �
[IH: r

′
< r ⇒ m

′
< m℄

B;B

′ ⊢ t0 : � (mf)

�0 �11
(mix)

′′
, m

′′ = (d(�); r′′)
B;B

′′ ⊢ u[t=x
j

] : �
[IH: r

′′
< r ⇒ m

′′
< m℄

B;B

′′ ⊢ t1 : � (mf)

(∩R)
�

′ :: B;B′
; B

′′ ⊢ t′(= t0 = t1) : � ∩ �

By the IH, we have t0 �և u[t=x
j

] ։
�

t1. But t0; t1 are normal and the normal form is unique, so

t0 = t1 = t

′
and u[t=x

j

] ։
�

t

′
.

Case (∪R): Very straightforward, even easier than the two right-rule ases shown above. ⊣

Remark A.2 In Lemma A.1 we ould have also inluded the fat that �

′
does not ontain any fresh-

with-respet-to-� variables. This fat is taitly used in the proof, in ases A : (→L) and B : (→L).



APPENDIX B

A Transformation Example

Consider the following �-terms.

u

′ = xx1 v

′ = x1x

u

′′ = x2yy v

′′ = y(x2y)

u = x2x1x1 v = x1(x2x1)

If s = x2x1 and r = x1, it is u = u

′[s=x] = u

′′[r=y] and v = v

′[s=x] = v

′′[r=y]. Moreover, if s

′ = x2y, the

following �-term relations hold.

u

′ = xr v

′ = rx

u

′′ = s

′
y v

′′ = ys

′

u = sr v = rs

If � = (� →  → �) ∩ Æ; � = (" → � → �) ∩ �, and � = (Æ → ) ∩ (� → �) ∩ � ∩ ", onsider the
IUT

⊕
-derivation �1 :: B1 = { x1 : �; x2 : � → � ∪ � } ⊢ uv : � and its tree (T t

iue

)1, exatly as given in the

transformation ounterexample of Chapter 6. The letter S denotes the set {x1; x2}.

B1 ⊢ x2 : � → � ∪ �

B1 ⊢ x1 : �
(∩E)

B1 ⊢ x1 : �
(→E)

B1 ⊢ x2x1 = s : � ∪ �

see below

�11 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �

see below

�12 :: B1; x : � ⊢ xr (rx) = u

′
v

′ : �
(∪E)

�1 :: B1 ⊢ sr (rs) = uv : �

B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : � →  → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : �
(→E)

B1; x : � ⊢ xx1 :  → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : Æ → 

B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : Æ
(→E)

B1; x : � ⊢ x1x : 
(→E)

�11 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �

171
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B1; x : � ⊢ x : �
(∩E1)

B1; x : � ⊢ x : "→ � → �

B1; x : � ⊢ x1 : �
(∩E2)

B1; x : � ⊢ x1 : "
(→E)

B1; x : � ⊢ xx1 : � → �

B1; x : � ⊢ x1 : �
(∩E)

B1; x : � ⊢ x1 : � → �

B1; x : � ⊢ x : �
(∩E2)

B1; x : � ⊢ x : �
(→E)

B1; x : � ⊢ x1x : �
(→E)

�12 :: B1; x : � ⊢ xx1(x1x) = u

′
v

′ : �

S ⊢ x2

•
◗
◗
◗◗•S ⊢ s
→E

✑
✑
✑✑

•
S ⊢ x1

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)1

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•

→E

S; x ⊢ u′
v

′

•S; x ⊢ u′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•S; x ⊢ v′

→E

•
S; x ⊢ x

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x1

•
S; x ⊢ x1

◗
◗
◗◗✑

✑
✑✑

•
S; x ⊢ x

If � = (� → �) ∩ ";  = (� → ) ∩ "; � = � ∪  , and � = (� → �

��

) ∩ ( →  

�

) ∩ (" → �), where
�

��

= � → � → � and  

�

=  →  → �, onsider also �2 :: B2 = { x1 : �; x2 : � } ⊢ uv : � and its

tree (T t

iue

)2, as demonstrated below. For spae eonomy, we denote B

�

and B

 

the bases B2; y : � and

B2; y :  , respetively.

B2 ⊢ x1 = r : � ∪  

see below

�21 :: B2; y : � ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �

see below

�22 :: B2; y :  ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �
(∪E)

�2 :: B2 ⊢ x2rr (r (x2r)) = uv : �

B

�

⊢ x2 : �
(∩E)

B

�

⊢ x2 : �→ �

��

B

�

⊢ y : �
(→E)

B

�

⊢ x2y : �
��

B

�

⊢ y : �
(→E)

B2; y : � ⊢ x2yy : � → �

B

�

⊢ y : �
(∩E1)

B

�

⊢ y : � → �

B

�

⊢ x2 : �
(∩E2)

B

�

⊢ x2 : "→ �

B

�

⊢ y : �
(∩E2)

B

�

⊢ y : "
(→E)

B

�

⊢ x2y : �
(→E)

B2; y : � ⊢ y (x2y) : �
(→E)

�21 :: B2; y : � ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �

B

 

⊢ x2 : �
(∩E)

B

 

⊢ x2 :  →  

�

B

 

⊢ y :  
(→E)

B

 

⊢ x2y :  
�

B

 

⊢ y :  
(→E)

B2; y :  ⊢ x2yy :  → �

B

 

⊢ y :  
(∩E1)

B

 

⊢ y : � → 

B

 

⊢ x2 : �
(∩E2)

B

 

⊢ x2 : "→ �

B

 

⊢ y :  
(∩E2)

B

 

⊢ y : "
(→E)

B

 

⊢ x2y : �
(→E)

B2; y :  ⊢ y (x2y) : 
(→E)

�22 :: B2; y :  ⊢ x2yy (y (x2y)) = u

′′
v

′′ : �
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S ⊢ r
•
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S; y ⊢ u′′

v

′′

→E

•S; y ⊢ u′′

→E

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•

→E

S; y ⊢ v′′

•S; y ⊢ s′
→E

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

•
S; y ⊢ y

◗
◗
◗◗✑

✑
✑✑

•S; y ⊢ s′
→E

•
S; y ⊢ x2

◗
◗
◗◗✑

✑
✑✑

•
S; y ⊢ y

Trying to bottom-up transform �1, so that its bottom (∪E) is like the one in �2, i.e. with term-

statements S ⊢ r and S; y ⊢ u

′′
v

′′
at the major and minor premises, respetively, we end up with the

following �

′
1.

B1 ⊢ x1 : �
(∪I)

B1 ⊢ r = x1 : � ∪ �

�

′
110 (see below)

B

′
1 ⊢ s′ = x2y : � ∪ �

�

′
111 (see below)

B

′
1; x : � ⊢ xy (yx) : �

�

′
112 (see below)

B

′
1; x : � ⊢ xy (yx) : �

(∪E)[1; s′]

B

′
1 = B1 ∪ { y : � } ⊢ x2yy (y (x2y)) = s

′
y (ys′) = u

′′
v

′′ : � same

(∪E)[4; r]

�

′
1 :: B1 ⊢ uv = x2rr (r (x2r)) : �

B1; y : � ⊢ x2 : � → � ∪ �

B1; y : � ⊢ y : �
(∩E)

B1; y : � ⊢ y : �
(→E)

�

′
110 :: B1; y : � ⊢ s′ = x2y : � ∪ �

B

′
1; x : � ⊢ x : �

(∩E1)

B

′
1; x : � ⊢ x : � →  → �

B

′
1; x : � ⊢ y : �

(∩E)
B

′
1; x : � ⊢ y : �

(→E)

B

′
1; x : � ⊢ xy :  → �

B

′
1; x : � ⊢ y : �

(∩E)
B

′
1; x : � ⊢ y : Æ → 

B

′
1; x : � ⊢ x : �

(∩E2)

B

′
1; x : � ⊢ x : Æ

(→E)

B

′
1; x : � ⊢ yx : 

(→E)

�

′
111 :: B′

1; x : � ⊢ xy (yx) : �

B

′
1; x : � ⊢ x : �

(∩E1)

B

′
1; x : � ⊢ x : "→ � → �

B

′
1; x : � ⊢ y : �

(∩E2)

B

′
1; x : � ⊢ y : "

(→E)

B

′
1; x : � ⊢ xy : � → �

B

′
1; x : � ⊢ y : �

(∩E)
B

′
1; x : � ⊢ y : � → �

B

′
1; x : � ⊢ x : �

(∩E2)

B

′
1; x : � ⊢ x : �

(→E)

B

′
1; x : � ⊢ yx : �

(→E)

�

′
112 :: B′

1; x : � ⊢ xy (yx) : �
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It is worth noting that the (∪E)[1; s′] onsidered right above the (∪E)[4; r] is the only rule-appliation that

works at that point. The (→E), the (∪E)[1; u′′], the (∪E)[1; v′′], and the other two possible (∪E)[1; s′]'s all

fail. We annot onsider a (∪E)[2] or an (∩I). Comparing this transformation of �1 with its ounterpart

in the transformation ounterexample of Chapter 6 (see ase 4b1), we observe the following.

ounterexample example

u

′′
v

′′ = s

′
y (ys) u

′′
v

′′ = s

′
y (ys′)

rule outome rule outome

(→E) × (→E) ×

(∪E)[1; u′′] × (∪E)[1; u′′] ×

(∪E)[1; v′′] × (∪E)[1; v′′] ×

(∪E)[1; s′] ×

(∪E)[1; s′] (i)
×

[xy (ys′) ]

(∪E)[1; s′] (ii)
×

[ s′y (yx) ]

(∪E)[1; s′] (iii)
X

[xy (yx) ]

(∪E)[1; s] × (∪E)[1; s] not

(∪E)[2] not (∪E)[2] not

(∩I) not (∩I) not

We then aordingly transform �2 to �
′
2, still working bottom-up.

B2 ⊢ r = x1 : � ∪  

�

′
21 (see below)

B2; y : � ⊢ x2yy (y (x2y)) = s

′
y (ys′) : �

�

′
22 (see below)

B2; y :  ⊢ x2yy (y (x2y)) = s

′
y (ys′) : �

(∪E)[2; r]

�

′
2 :: B2 ⊢ uv = x2rr (r (x2r)) : �

see below

�

′
210 :: B2; y : � ⊢ s′ : (�

��

∩ �) ∪ (�
��

∩ �)

see below

�

′
211 :: B2; y : �; x : �

��

∩ � ⊢ xy (yx) : � same

(∪E)[1; s′]
�

′
21 :: B2; y : � ⊢ s′y (ys′) : �

B2; y : � ⊢ x2 : �
(∩E)

B2; y : � ⊢ x2 : �→ �

��

B2; y : � ⊢ y : �
(→E)

B2; y : � ⊢ x2y : �
��

B2; y : � ⊢ x2 : �
(∩E2)

B2; y : � ⊢ x2 : "→ �

B2; y : � ⊢ y : �
(∩E2)

B2; y : � ⊢ y : "
(→E)

B2; y : � ⊢ x2y : �
(∩I)

B2; y : � ⊢ x2y : �
��

∩ �
(∪I)

�

′
210 :: B2; y : � ⊢ x2y = s

′ : (�
��

∩ �) ∪ (�
��

∩ �)
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B

′
2 ⊢ x : �

��

∩ �
(∩E1)

B

′
2 ⊢ x : �

��

B

′
2 ⊢ y : �

(→E)

B

′
2 ⊢ xy : �→ �

B

′
2 ⊢ y : �

(∩E1)

B

′
2 ⊢ y : � → �

B

′
2 ⊢ x : �

��

∩ �
(∩E2)

B

′
2 ⊢ x : �

(→E)

B

′
2 ⊢ yx : �

(→E)

�

′
211 :: B′

2 = B2 ∪ { y : �; x : �
��

∩ � } ⊢ xy (yx) : �

see below

�

′
220 :: B2; y :  ⊢ s′ : ( 

�

∩ �) ∪ ( 
�

∩ �)

see below

�

′
221 :: B2; y :  ; x :  

�

∩ � ⊢ xy (yx) : � same

(∪E)[1; s′]
�

′
22 :: B2; y :  ⊢ s′y (ys′) : �

B2; y :  ⊢ x2 : �
(∩E)

B2; y :  ⊢ x2 :  →  

�

B2; y :  ⊢ y :  
(→E)

B2; y :  ⊢ x2y :  
�

B2; y :  ⊢ x2 : �
(∩E2)

B2; y :  ⊢ x2 : "→ �

B2; y :  ⊢ y :  
(∩E2)

B2; y :  ⊢ y : "
(→E)

B2; y :  ⊢ x2y : �
(∩I)

B2; y :  ⊢ x2y :  
�

∩ �
(∪I)

�

′
220 :: B2; y :  ⊢ x2y = s

′ : ( 
�

∩ �) ∪ ( 
�

∩ �)

B

′′
2 ⊢ x :  

�

∩ �
(∩E1)

B

′′
2 ⊢ x :  

�

B

′′
2 ⊢ y :  

(→E)

B

′′
2 ⊢ xy :  → �

B

′′
2 ⊢ y :  

(∩E1)

B

′′
2 ⊢ y : � → 

B

′′
2 ⊢ x :  

�

∩ �
(∩E2)

B

′′
2 ⊢ x : �

(→E)

B

′′
2 ⊢ yx : 

(→E)

�

′
221 :: B′′

2 = B2 ∪ { y :  ; x :  
�

∩ � } ⊢ xy (yx) : �

The trees (T t

iue

)′1 and (T t

iue

)′2 both exist and are idential, as required.

S ⊢ r
•
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗•
∪E

S ⊢ uv

(T t

iue

)′1 = (T t

iue

)′2

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
•S; y ⊢ u′′

v

′′

∪E

•
S; y ⊢ x2

◗
◗
◗◗•S; y ⊢ s′
→E

✑
✑
✑✑

•
S; y ⊢ y

◗
◗
◗
◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑
✑
✑
✑✑

•S; y; x ⊢ xy (yx)
→E

•
S; y; x ⊢ x

◗
◗
◗◗•S; y; x ⊢ xy
→E

✑
✑
✑✑

•
S; y; x ⊢ y

◗
◗
◗
◗
◗
◗◗✑

✑
✑
✑
✑
✑✑
•

→E

S; y; x ⊢ yx

•
S; y; x ⊢ y

◗
◗
◗◗✑

✑
✑✑

•
S; y; x ⊢ x
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Investigating losely the transformation ounterexample in Chapter 6 and the transformation example

given here, we note the following. In the ounterexample, the terms u

′
and v

′
are symmetri with respet

to appliation (u

′ = xr; v

′ = rx), while u

′′
and v

′′
are not (u

′′ = s

′
y; v

′′ = ys). On the ontrary, in

the example, both u

′
; v

′
and u

′′
; v

′′
are symmetri with respet to appliation (u

′ = xr; v

′ = rx and

u

′′ = s

′
y; v

′′ = ys

′
). If (u′v′)[s=x] = sr (rs) = uv = x2rr (r (x2r)) = (u′′v′′)[r=y], there are three

di�erent hoies for u

′
v

′
, one of whih employs symmetri-with-respet-to-appliation u

′
and v

′
, and

�fteen di�erent hoies for u

′′
v

′′
, three of whih employ symmetri u

′′
and v

′′
.

u

′
v

′
symmetry

1 xr (rs) no

2 sr (rx) no

3 xr (rx) X

u

′′
v

′′
symmetry

1 x2yr (r (x2r)) = s

′
r (rs) no

2 x2ry (r (x2r)) = sy (rs) no

3 x2rr (y (x2r)) = sr (ys) no

4 x2rr (r (x2y)) = sr (rs′) no

5 x2yy (r (x2r)) = s

′
y (rs) no

6 x2yr (y (x2r)) = s

′
r (ys) no

7 x2yr (r (x2y)) = s

′
r (rs′) X

8 x2ry (y (x2r)) = sy (ys) X

9 x2ry (r (x2y)) = sy (rs′) no

10 x2rr (y (x2y)) = sr (ys′) no

11 x2ry (y (x2y)) = sy (ys′) no

12 x2yr (y (x2y)) = s

′
r (ys′) no

13 x2yy (r (x2y)) = s

′
y (rs′) no

14 x2yy (y (x2r)) = s

′
y (ys) no

15 x2yy (y (x2y)) = s

′
y (ys′) X

It would be interesting to further examine if all the ombinations whih involve symmetry for both u

′
v

′

and u

′′
v

′′
an provide transformation examples, i.e. if, besides ombination 3-15, whih is met in the

example presented here, ombinations 3-7 and 3-8 an also provide transformation examples. It would
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also be interesting to test if all the rest ombinations an deliver transformation ounterexamples; the

ounterexample in Chapter 6 uses ombination 3-14. These onjetures and their likely onsequenes are

left open for future study.
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